跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯宏達
研究生(外文):Hung-Da Ko
論文名稱:氧在莫來石/氧化鋯複合材料之擴散研究
論文名稱(外文):Oxygen Diffusion in Mullite/Zirconia Composites
指導教授:林健正林健正引用關係
指導教授(外文):Chien-Cheng Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:52
中文關鍵詞:莫來石氧化鋯複合材料擴散
外文關鍵詞:mullitezirconiacompositesoxygendiffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究使用熱壓法製備莫來石/氧化鋯(mullite/ZrO2)複合材料,並且將之暴露在18O/Ar氣氛中進行1000℃/5小時、1200℃/3小時及1350℃/2小時之擴散實驗。研究主要目的是探討氧化鋯含量對此複合材料之氧擴散的影響,氧擴散係數的計算是經由16O-18O交換反應,並利用二次離子質譜儀(SIMS)測量18O的縱深分布。研究結果顯示,莫來石/氧化鋯複合材料的氧擴散係數(Dv)及表面交換係數(α)會隨著氧化鋯含量的增加而增加,而擴散活化能則隨著氧化鋯含量增加而減少。氧化鋯含量5 vol%∼80 vol%之複合材料的擴散活化能為269∼148 kJ/mol。氧化鋯含量為5 vol%及15 vol%之複合材料,因有zircon相的產生,使其氧擴散係數低於純mullite。氧在純mullite中之體擴散Arrhenius關係式為Dv, mullite=1.12×10-8 exp[-(313±23)kJ/RT] m2s-1 (at 1000℃~1350℃);晶界擴散Arrhenius關係式為Dgb, mullitew=8.86×10-15exp[-(256±11)kJ/RT] m3s-1 (at 1000℃~1350℃)。經計算後,氧在晶界擴散係數遠大於體擴散係數,相差約有105左右。

Mullite/Zirconia composites with various zirconia contents, fabricated by hot pressing, were exposed in 18O/Ar atmosphere at 1000℃/5Hr, 1200℃/3Hr and 1350℃/2Hr. This study aims at the effect of zirconia content on the oxygen diffusion in mullite/zirconia composites. The oxygen diffusion coefficient has been measured by the 16O/18O isotope exchange technique using second ion mass spectroscopy (SIMS) depth profiling. The result of this study is as follows:Oxygen diffusivities and surface exchange coefficient of mullite/zirconia composites are increased with the increase of zirconia content. The activation energies are decreased with the increase of zirconia content. Activation energy of composites containing 5 vol%∼80 vol% zirconia are 269∼148 kJ/mol. Oxygen diffusivities of composites containing 5 vol% and 15 vol% zirconia are less than mullite, duo to the formation of zircon. The volume diffusivity and grain boundary diffusivity of mullite is expressed as Dv, mullite=1.12×10-8 exp [-(313±23)kJ/RT] m2s-1 and Dgb, mullitew=8.86×10-15 exp[-(256±11)kJ/RT] m3s-1(at 1000℃∼1350℃), respectively. After calculating, diffusion of oxygen in grain boundary is faster than that in the bulk by about 5 orders of magnitude.

中文摘要 i
英文摘要 ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 前言 1
第二章 原理與文獻回顧 3
2-1擴散理論 3
2-2氧化鋯(ZrO2) 6
2-3莫來石(mullite) 7
2-4陶瓷複合材料的氧化行為 8
第三章 實驗步驟 10
3-1粉體特性測量 10
3-2熱壓試片的製備 10
3-2-1 mullite/ZrO2複合材料粉末的製備 10
3-2-2熱壓試片 11
3-3試片加工 12
3-4密度測量 12
3-5 X-ray繞射分析 13
3-6掃瞄式電子顯微鏡觀察 13
3-7穿透式電子顯微鏡觀察 13
3-8氧擴散實驗 14
第四章 結果與討論 15
4-1熱壓結果 15
4-2 XRD分析 16
4-3擴散分析 16
4-4臨界體積分率的探討 21
第五章 結論 23
參考文獻 24

1. S. M. Lee, “Internation encyclopedia of composites” Vol. 1, 267-278, VCH Publishers, Inc. New York, 1990.
2. 汪建民主編,“陶瓷技術手冊(下)“ 第二十四章,粉末冶金協會,台灣,1999。
3. N. Claussen, and J. Jahn, “Mechanical Properties of Sintered in Situ-Reacted Mullite-Zirconia Composites,” J. Am. Ceram. Soc., 63[3-4], 228-229 (1980).
4. R. Ruh, K. S. Mazdiyasni, and M. G. Mendiratta, “Mechanical and Microstructural Characterization of Mullite and Mullite-SiC-Whisker and ZrO2-Toughened-Mullite-SiC-Whisker Composites,” J. Am. Ceram. Soc., 71[6], 503-512 (1988).
5. P.F. Becher, C.H. Hsueh, P. Angelini, and T.N. Tiegs, "Toughening Behavior in Whisker-Reinforced Ceramic Matrix Composites," J. Am. Ceram. Soc., 71[12], 1050-1061 (1988).
6. M.I. Osendi, B.A. Bender, and D. Lewis III, "Microstructure and Mechanical Properties of Mullite-Silicon Carbide Composites," J. Am. Ceram. Soc., 72[6] 1049-1054 (1989).
7. C.Y. Tsai, C.C. Lin, A.K. Li, and A. Zangvil, "Effect of Zirconia Content on the Oxidation Behavior of Silicon Carbide / Zirconia / Mullite Composites," J. Am. Ceram. Soc., 81 [9] 2413-20 (1998).
8. C.C. Lin, A. Zangvil, and R. Ruh, "Modes of Oxidation in SiC- Reinforced Mullite/ZrO2 Based Composites: Oxidation vs. Depth Behavior," Acta Mater., 47 [6] 1977-86 (1999).
9. C.C. Lin, A. Zangvil, and R. Ruh, "Microscopic Mechanisms of Oxidation in SiC-Whisker-Reinforced Mullite/ZrO2 Matrix Composites," J. Am. Ceram. Soc., 82 [10] 2833-40 (1999).
10. C. C. Lin, A. Zangvil, and R. Ruh, “Phase Evolution in Silicon Carbide-Whisker-Reinforced Mullite/Zirconia Composite during Long- Term Oxidation at 1000℃ to 1350℃,” J. Am. Ceram. Soc., 83[7] 1797-803 (2000).
11. Y. J. Lin, and L. J. Chen, “Reaction Synthesis of Mullite-Silicon Carbide-Yttria-Stabilized Zirconia Composites,” J. Mater. Res., 14 [10] 3949-3956 (1999).
12. J. D. Kalen, R. S. Boyce and J. D. Cawley, “Oxygen Tracer Diffusion in Vitreous Silica,” J. Am. Ceram. Soc., 74[1] 203-209 (1991).
13. Sakaguchi, V. Srikanth, T. Ikegami and H. Haneda, “Grain Boundary Diffusion of Oxygen in Alumina Ceramics,” J. Am. Ceram. Soc., 78[9] 2557-59 (1995).
14. A. C. S. Sabioni, E. D. Zanotto, F. Millot, H. L. Tuller, “Oxygen Self-Diffusion in a Cordierite Glass,” J. Non-Crystalline Solids., 242, 177-182 (1998).
15. U. Brossmann, U. Sodervall, R. Wurschum, and H. E. Schaefer, “18O Diffusion in Nanocrystalline ZrO2,” NanoStructured Materials, 12, 871-874 (1999).
16. B. K. Kim, S. J. Park, and H. Hamaguchi, “Determination of the Oxygen Self-diffusion Coefficients in Y2O3-containing Tetragonal Zirconia Polycrystals by Raman Spectrometric Monitoring of the 16O-18O Exchange Reaction,” J. Am. Ceram. Soc., 76[8] 2119-22 (1993).
17. B. K. Kim, S. J. Park, and H. Hamaguchi, “Raman Spectrometric Determination of the Oxygen Self-Diffusion Coefficient in Oxides,” J. Am. Ceram. Soc., 77[10] 2648-2652 (1994).
18. H. Natio, N. Sakai, T. Otake, H. Yugami, H Yokokawa, “Oxygen Transport Properties in ZrO2-CeO-Y2O3 by SIMS Analysis,” Solid State Ionics., 135, 669-673 (2000).
19. Y. Ikuma, E. Shimada, S. Sakano, M. Oishi, M. Yokoyama and Z Nakagawa, “Oxygen Self-Diffusion in Cylindrical Single-Crystal Mullite,” J. Electrochem. Soc., 146[12] 4672-4675 (1999)
20. P. Fielitz, G. Borchardt, H. Schneider, M. Schmucker, M. Wiedenbeck, D. Rhede, “Self-Diffusion of Oxygen in Mullite,” J. European Ceram. Soc., 21, 2577-2582 (2001).
21. P. Fielitz and G. Borchardt, “Secondary Ion Mass Spectroscopy Study of Oxygen-18 Tracer Diffusion in 2/1-Mullite Single Crystals,” J. Am. Ceram. Soc., 84[12] 2845-48 (2001).
22. J. Crank, “The Mathematics of Diffusion” 2nd Ed. Oxford University Press, Oxford, U.K., 1975.
23. M. E. Glicksman, “Diffusion in Solids” Chapter 3, Wiley, New York, 2000.
24. G. E. Murch, A. S. Nowick, “Diffusion in Crystalline Solids” Chapter 3, p.145 (1984).
25. W. Wagner, “Mechanism of Electric Conduction in Nernst Flower” Naturwissenschatten, 31. p.265 (1943).
26. A. D. Brailsford, M. Yussouff, E.M. Logthetis, M. Shane “Steady-State model of a zirconia oxygen sensor in a simple gas mixture,” Sensors and Actuators B., 24-25, 362-365 (1995).
27. H. Schneider, K. Okada, and J. A. Pask, “Mullite and Mullite Ceramics” Chapter 2, Wiley, New York, 1994.
28. I. A. Aksay, D. M. Dabbs, and M. Sarikaya, “Mullite for Structural, Electric, and Optical Applications,” J. Am. Ceram. Soc., 74[10] 2343-2358 (1991).
29. K. L. Luthra, and H. D. Park, “Oxidation of Silicon Carbide- Reinforced Oxide-Matrix Composites at 1375℃ to 1575℃,” J. Am. Ceram. Soc., 73[4] 1014-1023 (1990).
30. M. I. Osendi, “Oxidation Behaviour of Mullite-SiC Composites,” J. Materials Science., 25, 3561-3565 (1990).
31. P. Wang, G. Grathwohl, F. Porz, and F. Thummler, “Oxidation Behaviour of SiC Whisker-Reinforced Al2O3/ZrO2 Composites,” Powder Metall. Int., 23, No.6, 370-375 (1991).
32. M. B-Ricoult, “Oxidation Behavior of SiC-Whisker-Reinforced Alumina-Zirconia Composites,” J. Am. Ceram. Soc., 74[8] 1793-1802 (1991).
33. K. N. Lee, and R. A. Miller, “Oxidation Behavior of Mullite-Coated SiC and SiC/SiC Composites under Thermal Cycling between Room Temperature and 1200℃-1400℃,” J. Am. Ceram. Soc., 79[3] 620-626 (1996).
34. H. Fritze, J. Jojic, T. Witke, C. Ruscher, S. Weber, S. Scherrer, R. Weib, B. Schultrich, and G. Borchardt, “Mullite Based Oxidation Protection for SiC-C/C Composites in Air at Temperatures Up to 1900 K,” J. European Ceram. Soc., 18, 2351-2364 (1998).
35. B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., 36[12] 3770-3778 (1965).
36. A. V. Berenov, J. L. MacManus-Driscoll, and J. A. Kilner, “Oxygen Tracer Diffusion in Undoped Lanthanum Manganites,” Solid State Ionics., 122, 41-49 (1999).
37. S. Somiya and Y. Hirata, “Mullite Powder Technology and Applications in Japan,” Ceramic Bulletin., 70[10] 1624-1632 (1991).
38. A. D. Le Claire, “The Analysis of Grain Boundary Diffusion Measurement,” Br. J. Appl. Phys., 14, 351-356 (1963).
39. I. Yasuda, K. Ogasawara, and M. Hishinuma, “Oxygen Tracer Diffusion in Polycrystalline Calcium-Doped Lanthanum Chromites,” J. Am. Ceram. Soc., 80[12] 3009-3012 (1997).
40. K. Kowalski, A. Bernasik, and A. Sadowski, “Bulk and Grain Boundary Diffusion of Titanium in Yttria-Stabilized Zirconia,” J. European Ceram. Soc., 20, 951-958 (2000).
41. E. B. Watson and D. J. Cherniak, “Oxygen Diffusion in Zircon,” Earth and Planetary Science Letters., 148, 527-544 (1997).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top