跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 18:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳碧真
研究生(外文):Bi-Jean Chen
論文名稱:以化學法和物理法合成奈米級磷灰石粉末
論文名稱(外文):Synthesis nano-apatite powders by chemical and physcial methods
指導教授:陳三元陳三元引用關係
指導教授(外文):San-Yuan Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:75
中文關鍵詞:奈米磷灰石
外文關鍵詞:nanoapatotehydroxyapatite
相關次數:
  • 被引用被引用:1
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以合成奈米級的磷灰石為主要目的,因此,將論文分為主要的兩個架構:以化學法溶膠凝膠法合成奈米級的磷酸鹽與以物理法用雷射剝離激發氫氧基磷灰石靶材得奈米級的磷酸鹽粉末。在溶膠凝膠法合成磷灰石方面,選擇了三種不同的鈣與磷當成前驅溶液的來源,分別是第一組Ca(OC2H5)2 + P(OC2H5)3,第二組Ca(NO3)2.4H2O + P(OC2H5)3以及第三組Ca(OH)2+ H3PO4。這三組不同的鈣與磷來源以Ca/P莫耳比計量合成的磷灰石粉末大部分的粒徑大小都屬於奈米級的,第一組合成的是穩定的磷酸鈣相,後兩組合成的是穩定的氫氧基磷灰石相。以準分子雷射剝離製備奈米級磷灰石粉末方面,將雷射頻率控制在1Hz,改變雷射能量及雷射腔體壓力這兩個參數。結果顯示在雷射能量較低與腔體壓力較低的條件下,靶材受激發後所收集到的粉末其粒徑大小分佈較均勻,粒徑大小是屬於奈米級的。

Nano-apatite powders have been synthesized by chemical and physical methods in this research. The chemical and physical processes used in this study were sol-gel and excimer laser ablation methods, respectively. In sol-gel method, various calcium and phosphate sources with Ca/P ratio of 1.67 were used as the starting precursors to fabricate nano-apatite powders. These calcium and phosphate sources were categorized as Ca(OC2H5)2 + P(OC2H5)3, Ca(NO3)2.4H2O + P(OC2H5)3, and Ca(OH)2 + H3PO4. Although nano-apatite powders can be produced by all these three sources, hydroxyapatite (HAp) as surface-active bioceramics can be only obtained from Ca(NO3)2.4H2O + P(OC2H5)3 and Ca(OH)2 + H3PO4. In contrast, calcium phosphate (TCP) as resorbable bioceramics was fabricated by Ca(OC2H5)2 + P(OC2H5)3. In excimer laser ablation method, the effects of laser energy and chamber pressure on the material properties of final apatite product were investigated. It was observed that the nano-apatite powders derived from low laser energy and chamber pressure would have narrow particle size distribution and good crystallinity.

中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
致謝……………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅴ
圖目錄…………………………………………………………………Ⅶ
表目錄…………………………………………………………………ⅩⅠ
第一章 緒論……………………………………………………………1
1-1 前言………………………………………………………1
1-2 氫氧基磷灰石與磷酸鈣簡介……………………………4
1-3 研究動機與目的…………………………………………4
第二章 文獻回顧………………………………………………………5
2-1 化學法合成磷灰石………………………………………5
2-2 雷射激發靶材的機制……………………………………9
2-3 不同雷射激發源與激發後收集的粉末…………………10
2-4 雷射激發靶材後靶材表面的變化………………………12
第三章 實驗步驟與方法………………………………………………14
3-1 不同Ca和P的來源以sol-gel法合成磷灰石粉末……14
3-1.1 醇系Ca(OC2H5)2/乙二醇溶液和P(OC2H5)3/乙醇溶液合成磷灰石粉末……………………………14
3-1.2 醇系Ca(NO3)2.4H2O/水溶液和P(OC2H5)3/乙醇溶液合成磷灰石粉末……………………………15
3-1.3 水系Ca(OH)2水溶液和H3PO4水溶液合成磷灰石粉末……………………………………………16
3-2 製備氫氧基磷灰石靶材………………………………17
3-3 用準分子雷射剝離氫氧基磷灰石靶材………………18
第四章 結果與討論…………………………………………………19
4-1 溶膠凝膠法合成奈米級磷灰石粉末的探討…………19
4-1.1 醇系Ca(OC2H5)2/乙二醇溶液和P(OC2H5)3/乙醇溶液合成磷灰石粉末……………………………19
4-1.2 醇系Ca(NO3)2.4H2O/水溶液和P(OC2H5)3/乙醇溶液合成磷灰石粉末……………………………22
4-1.3 水系Ca(OH)2水溶液和H3PO4水溶液合成磷灰石粉末……………………………………………24
4-2 準分子雷射激發製備奈米級磷灰石粉末的探討………25
4-2.1 鍛燒溫度與壓模壓力對氫氧基灰石靶材的影響25
4-2.2 用準分子雷射激發氫氧基磷灰石靶材討論……27
第五章 結論…………………………………………………………33
圖 目 錄
圖3-1 以Ca(OC2H5)2 + P(OC2H5)3合成磷灰石的流程圖……………34
圖3-2 雷射剝離的裝置圖………………………………………………35圖4-1.1 在空氣中以Ca(OC2H5)2 + P(OC2H5)3合成的磷灰石其aging過程中取出烘乾200℃,鍛燒500 ℃後的XRD分析圖(a)澄清溶液(b)半透光溶液(c)不透光的凝膠(d)凝膠分解後的渾濁不透光沉澱溶液………………………………………………36
圖4-1.2 以Ca(OC2H5)2 + P(OC2H5)3在三種氣氛:(a)氮氣、(b)空氣與(c)封閉的氣氛下合成的不透光的凝膠FT-IR分析圖………37
圖4-1.3 以Ca(OC2H5)2 + P(OC2H5)3在三種氣氛:(a)氮氣、(b)空氣與(c)封閉的氣氛下合成的不透光的凝膠XRD分析圖………38
圖4-1.4 在空氣氣氛下以Ca(OC2H5)2 + P(OC2H5)3合成磷灰石aging過程中的不透光凝膠熱分析圖………………………………39
圖4-1.5 以Ca(OC2H5)2 + P(OC2H5)3在空氣氣氛下合成的磷灰石經200℃烘乾,1000℃鍛燒後的TEM分析粉末形態…………40
圖4-1.6 以Ca(OC2H5)2 + P(OC2H5)3在空氣氣氛下合成的磷灰石XRD分析圖…………………………………………………………41
圖4-1.7 以Ca(NO3)2.4H2O + P(OC2H5)3合成的磷灰石經130℃烘箱烘乾,鍛燒1000℃的TEM分析粉末形態…………………42
圖4-1.8 以Ca(NO3)2.4H2O + P(OC2H5)3合成的磷灰石XRD分析圖………………………………………………………………43
圖4-1.9 以Ca(NO3)2.4H2O + P(OC2H5)3合成的磷灰石經130℃烘乾的粉末FT-IR分析圖…………………………………………44
圖4-1.10以Ca(OH)2+ H3PO4合成的磷灰石經130℃烘箱烘乾,鍛燒不同溫度粉末的TEM分析(a)130℃烘乾(b)鍛燒500℃(c)鍛燒1000℃……………………………………………………45
圖4-1.11 以Ca(OH)2+ H3PO4合成磷灰石的XRD分析圖……………46
圖4-2.1以Ca(OH)2+ H3PO4合成的磷灰石鍛燒800℃後分別以不同壓磨壓力(a)10MPa、(b)25MPa與(c)35MPa 壓成靶材後進行1250℃的燒結…………………………………………………47
圖4-2.2以Ca(OH)2+ H3PO4合成的磷灰石分別燒結 (a) 1250℃與(b) 1450℃後以壓磨壓力25MPa壓成的靶材的SEM表面分析圖………………………………………………………………48
圖4-2.3以Ca(OH)2+ H3PO4合成的磷灰石分別燒結(a)1250℃與(b)1450℃ 的XRD分析圖…………………………………49
圖4-2.4 同雷射激發數在2torrs腔體壓力以2J/cm2能量激發已拋光靶材的SEM表面分析圖靶材……………………………………50
圖4-2.5不同雷射激發數在2torrs腔體壓力以2J/cm2能量激發未拋光靶材的SEM表面分析圖………………………………………51
圖4-2.5(a) 雷射激發數1800 shots在2torrs腔體壓力以2J/cm2能量激發未拋光靶材的SEM表面分析圖………………………52
圖4-2.5(b) 雷射激發數3600 shots在2torrs腔體壓力以2J/cm2能量激發未拋光靶材的SEM表面分析圖………………………53
圖4-2.5(c) 雷射激發數10800 shots在2torrs腔體壓力以2J/cm2能量激發未拋光靶材的SEM表面分析圖……………………54
圖4-2.6(a) 不同雷射激發數在760torrs腔體壓力以2J/cm2能量激發已拋光靶材的SEM表面分析圖……………………………55
圖4-2.6(b) 不同雷射激發數在760torrs腔體壓力以2J/cm2能量激發已拋光靶材觀察周圍變化的SEM表面分析圖……………56
圖4-2.7 不同雷射激發數在760torrs腔體壓力以2J/cm2能量激發未拋光靶材觀察周圍變化的SEM表面分析圖……………………57
圖4-2.8 不同雷射激發數在760torrs腔體壓力以5J/cm2能量激發未拋光靶材觀察周圍變化的SEM表面分析圖…………………58
圖4-2.9 在760torrs腔體壓力以5J/cm2能量激發未拋光靶材(a)未受過雷射激發(b) 已受過雷射激發 (c) 析出結晶處的靶材表面的EDS 分析………………………………………………………59
圖4-2.10 在760torrs腔體壓力以5J/cm2能量激發未拋光靶材的靶材表面的XRD分析(a)受過雷射激發(b)未受過雷射激發……60
圖4-2.11 在2torrs腔體壓力以2J/cm2能量激發已拋光靶材所收集到的粉末的TEM分析…………………………………………61
圖4-2.12 在760torrs腔體壓力以2J/cm2能量激發已拋光靶材所收集到的粉末的TEM分析………………………………………62
圖4-2.13 在2torrs腔體壓力以5J/cm2能量激發已拋光靶材所收集到的粉末的TEM分析…………………………………………63
圖4-2.14 在760torrs腔體壓力以5J/cm2能量激發已拋光靶所收集到的粉末的TEM分析…………………………………………64
表 目 錄
表1-1 氫氧基磷灰石與磷酸鈣的化性簡介……………………………65
表4-1.1 比較三組不同的Ca和P來源所合成的磷灰石粉末………66
表4-2.1 比較相同燒結溫度、不同壓模壓力下得到的靶材…………67
表4-2.2 比較相同壓磨壓力、不同燒結溫度下得到的靶材…………67
表4-2.3 比較不同靶材條件、不同腔體壓力與不同雷射能量激發下靶材表面分析……………………………………………………68
表4-2.4 比較已拋光靶材在不同腔體壓力與不同雷射能量下激發靶材後收集的粉末………………………………………………69
表4-2.5 已拋光靶材在不同腔體壓力與不同雷射能量下激發靶材後收集的粉末分析後的結果……………………………………70

參 考 文 獻
1. R. A. Young and D. W. Holcomb, “Variability of hydroxyapatite preparations”, Calcified Tissue, Int. 34 (1982) 17-32
2. A. Osaka, Y. Miura, K. Takeuchi, M. Asada, and K. Takahashi, “Calcium apatite prepared from calcium hydroxide and orthophosphoric acid”, Journal of materials science: Materials in medicine 2 (1991) 51-55
3. A. Slosarczyk, E. Stobierska, Z. Paszkiewicz, and M. Gawlick, “Calcium phosphate materials prepared from precipitates with various calcium: phosphorus molar ratios”, Journal of American ceramic society 79 (1996) 2539-2544
4. M. Yoshimura, H. Suda, K. Okamoto, and K. Ioku, “Hydrothermal synthesis of biocompatible whiskers”, Journal of materials science 29 (1994) 3399-3402
5. Y. Masuda, K. Matubara, and S. Sakka, “Synthesis of Hydroxyapatite from Metal Alkoxides through Sol-Gel Technique”, J. of the Ceramic Society of Japan, Int, Edition.98 (1990) 1266-1277
6. D. M. Liu, T. Troczynski, and W. J. Tseng, “Water-based sol-gel hydroxyapatite: process development”, Biomaterials 22 (2001) 1721-1730
7. D. M. Liu, T. Troczynski, and W. J. Tseng, “Aging effect on the phase evolution of water-based sol-gel hydroxyapatite”, Biomaterials 0 (2001) 1-10
8. D. M. Liu, Q. Yang, T. Troczynski, and W. J. Tseng, “Structure evolution of sol-gel-derived hydroxyapatite”, Biomaterials 23 (2002) 1679-1687
9. L. M. Rodriguez-Lorenzo and M. Vallet-Regi. “Controlled crystallization of calcium phosphate apatites”, Chemical of materials 12 (2000) 2460-2465
10. X. Tang and Z. Wang, “Synthesis of biphasic ceramic of hydroxy- apatite and β-tricalaium phosphate with controlled phase content and porosity”, Journal of materials chemistry 8 (1998) 2233-2237
11. A. Deptula, W. Lada, T. Olczak, A. Borello, A. di Bartolomeo, and C. Alvani, “Preparation of spherical powders of hydroxyapatite by sol-gel process”, Journal of non-crystalline solids 147锄 (1992) 537-541
12. K. C. B. Yeong, J. Wang, and S. C. Ng, “Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4”, Biomaterials 22 (2001) 2705-2712
13. P. Shuk, W. L. Suchanek, T. Hao, E. Gulliver R. E. Riman, M. Senna, K. S. TenHuisen, and V. F. Janas, “ Mechanochemical-hydrothermal preparation of crystalline hydroxyapatite powders at room temperature”, Journal of materials research” Vol. 16, No. 5, May 2001, 1231-1234
14. A. Šlósarcyzk, C. Paulszkiewicz, M. Gawlicki, and Z. Paszkiewicz, “The FTIR spectroscopy and QXRD studies of calcium phosphate based materials produced from the powder precursors with different Ca/P ratio”, Ceramics international 23 (1997) 297-304
15. E. Bouyer, F. Gitzhofer, and M. I. Boulos, “Morphological study of hydroxyapatite nanocrystal suspension”, Journal of materials science: Materials in medicine 11 (2000) 523-531
16. S. Zhang and K. E. Gonsalves, “Preparation and characterization of thermally stable nanohydroxyapatite”, Journal of materials science: Materials in medicine 8 (1997) 25-28
17. L. D. Alessio, R. Teghil, M. Zaccagnino, I. Zaccardo, D. Ferro, and V. Marotta, “Pulsed laser ablation and deposition of bioactive glass as coating material for biomedical applications”, Applied surface science 138-139 (1999) 527-532
18. L. D’ Alessio, D. Ferro, V. Marotta, A. Santagata, R. Teghil, and M. Zaccagnino, “Laser ablation and deposition of Bioglass 45S5 thin films”, Applied surface science 183 (2001) 10-17
19. P. Serra and J. L. Morenza, “Imaging and spectral analysis of hydroxy- apatite laser ablation plumes”, Applied surface science 127-129 (1998) 662-667
20. P. Serra, L. Clerise, and J. L. Morenza, “Analysis of the expansion of hydroxyapatite laser ablation plumes”, Applied surface science 96-98 (1996) 216-221
21. P. Serra, J. M. Fernandez-Pradas, G. Sardin, and J. L. Morenza, “Interaction effects of an excimer laser beam with hydroxyapatite target”, Applied surface science 109/110 (1997) 384-388
22. A. A. Lushnikov, “Laser induced aerosols”, Journal of aerosol science. Vol. 27, Suppl. 1, (1996) S377-S378
23. X. C. Yang and W. Riehemann, “Characterizatio of Al2O3-ZrO2 nanocomposite powders prepared by laser ablation”, Scripta materialia 45 (2001) 435-440
24. E. Ozawa, Y. Kawakami, and T. Seto, “Formation and size contrpl of tungsten nano particles produced by Nd: YAG laser irradiation”, Scripta materialia 44 (2001) 2279-2283
25. J. L. Arias, M. B. Mayor, J. Pou, B. Leon, and M. Perez-Amor, “Stoichiometric transfer in pulsed laser deposition of hydroxyapatite”, Applied surface science 154-155 (2000) 434-438
26. M. D. Ball, S. Downes, C. A. Scotchford, E. N. Antonov, V. N. Bagratashvili, V. K. Popov, W. J. Lo, D. M. Grant, and S. M. Howdle, “Osteoblast growth on titanium foils coated with hydroxyapatite by pulsed laser ablation”, Biomaterials 22 (2001) 337-347
27. L. Clerises, E. Martinez, J. M. Fernandez-Pradas, J. Esteve, and J. L. Morenza, “Mechanical properties of calcium phosphate coatings deposited by laser ablation”, Biomaterials 21 (2000) 967-971
28. L. Clerises, J. M. Fernandez-Pradas, G. Sardin, and J. L. Morenza, “Dissolution behavior of calcium phosphate coatings obtained by laser ablation”, Biomaterials 19 (1998) 1483-1487
29. J. M. Fernandez-Pradas, G. Sardin, L. Cleries, P. Serra, C. Ferrater, and J. L. Morenza, “Deposition of hydroxyapatite thin films by excimer laser ablation”, Thin solid films 317 (1998) 393-396
30. J. M. Fernandez-Pradas, L. Cleries, E. Martinez, G. Sardin, J. Esteve, and J. L. Morenza, “Influence of thickness on the properties of hydroxy- apatite coatings deposited by KrF laser ablation”, Biomaterials 22 (2001) 2171-2175
31. K. A. Khor, A. Vreeling, Z. L. Dong, and P. Cheang, “Laser treatment of plasma sprayed HA coatings”, Materials science and engineering A266 (1999) 1-7
32. J. M. Fernandez-Pradas, P. Serra, J. L. Morenza, and P. N. De Aza, “Pulsed laser deposition of pseudowollastonite coatings”, Biomaterials 23 (2002) 2057-2061
33. C. Ray, B. Collins, T. Goehl, I. R. Dickson, and M. J. Glimcher, Calcified Tissue Int. 1989, 45,157
34. P. Layrolle and A. Lebugle, “Characterization and reactivity of nanosized calcium phosphates prepared in anhydrous ethanol” Chemical of materials 6 (1994) 1996-2004
35. A. Jillavenkatesa, D. T. Hoelzer and R. A. Condrate sr, “An electron microscopy study of the formation of hydroxyapatite throught sol-gel processing”, Journal of materials science 34 (1999) 4821-4830
36. A. Jillavenkatesa and R. A. Condrate sr, “Sol-gel processing of hydro- xyapatite”, Journal of materials science 33 (1998) 4111-4119
37. C. Ray, V. Renugopalakrishnan, B. Collins, and M. J. Glimcher, Calcified Tissue Int. 1991, 49,251
38. K. A. Gross, C. S. Chia, G. S. K. Kannangara, B. Bin-Nissan, and L. Hanley, “Thin hydroxytapatite coatings via sol-gel synthesis”, Journal of materials science: Materials in medicine 9 (1998) 839-843
39. P. Layrolle, A Ito, and T. Takishi, “Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite biomaterials”, Journal of American ceramic society 81 (1998) 1421-1428
40. C. S. Chia, K. A. Gross, and B. Bin-Nissan, “Critical ageing of hydroxyapatite sol-gel solutions”, Biomaterials 19 (1998) 2291-2296
41. K. A. Gross, V. Gross, and C. C. Berndt, “ Thermal analysis of amorphous phases in hydroxytapatite coating”, Journal of American ceramic society 8 (1998) 106-112
42. C. S. Chia and B. Bin-Nissan, “Bioactive nanocrystalline sol-gel hydroxyapatite coatings”, Journal of materials science: Materials in medicine 10 (1999) 465-469
43. M. Akao, H. Aoki, and K. Kayo, “Mechanical properties of sintered hydroxyapatite for prosthetic applications”, Journal of materials science 16 (1981) 809-812
44. K. Itatani, K. Iwafune, F. S. Howell, and M. Aizawa “Preparation of various calcium phosphate powders by ultrasonic spray freeze drying technigue”, Materials research bulletin 35 (2000) 575-585
45. Huaxia Jl and P. M. Marquis, “Modification of hydroxyapatite during transmission electron microscopy”, Journal of materials science letters 10(1991) 132-134
46. B. Dam, J. H. Rector, J. Johansson, S. Kars, and R. Griessen, “Stoichiometric transfer of complex oxide by pulsed laser deposition”, Applied surface science 96-98 (1996) 679-684

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 楊志顯(民85):輔仁大學體育課程滿意量表研製,大專體育第二十六期,頁25-35。
2. 楊志顯(民88):體育課滿意態度之內涵分析,大專體育第四十一期,頁49-52。
3. 黃森芳(民86):大專體育課程改革之趨勢(以美國為例),國民體育季刊二十六卷第四期,頁98-104。
4. 陳鎰明(民86):體育教學中如何對待新新人類,大專體育第三十期,頁124-129。
5. 楊裕隆(民87):台大學生體育態度之研究,大專體育,第三十六期,頁112-118。
6. 陳密桃(民74):大學生對教師教學行為的知覺與反應之分析研究。教育學刊,第六期,頁95-138。
7. 許義雄(民69):休閒的意義、內容及其方法。體育學報,第二輯,頁27-40。
8. 許素琴(民87)國立中央大學二、三年級學生修習體育課興趣選項課程之調查研究,大專體育第四十期,頁40-46。
9. 張宗昌、莊清泉(民84):國立台中商專學生喜歡與不喜歡體育課因素調查,大專體育,第二十二期,頁232-238。
10. 孫秀惠(民87):23縣市顧客滿意度排行榜,遠見雜誌,第149期,頁68。,
11. 王宗進(民88)東海大學體育課講授意見調查結果之探討,大專體育第四十四期,頁53-59。
12. 劉碧華(民89):體育教學評估之教學滿意度分析研究,體育學報第廿八輯,頁1-9。
13. 歐陽金樹(民86):國立聯合工商專校學生對興趣選項保齡球運動滿意度之調查。大專體育,第三十三期,頁35-41。
14. 潘義祥(民86):運動性休閒參與及大學體育課程之關係,大專體育第三十二期,頁75-79。
15. 蔡崇濱(民84):大學體育的省思,大專體育,第二十期,頁33-39。