(3.220.231.235) 您好!臺灣時間:2021/03/09 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許智明
研究生(外文):Chih-Ming, Hsu
論文名稱:方向性碳奈米管之製程控制及其鈷觸媒與矽基材界面反應
論文名稱(外文):Process control of the oriented Carbon Nanotubes and the interfacial reaction of Co catalyst and Si substrate
指導教授:郭正次
指導教授(外文):Cheng-Tzu, Kuo
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:121
中文關鍵詞:碳奈米管場發射觸媒矽化物
外文關鍵詞:carbon nanotubefield emissioncatalystsilicide
相關次數:
  • 被引用被引用:3
  • 點閱點閱:268
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
為了要開發並有效地控制奈米結構,碳奈米管(CNTs)之性質及成長方向、機制及與基材界面反應之關係研究是必要的。鈷觸媒鍍於矽基材,並利用不同中間層材料,使用微波電漿化學氣相沉積(MPCVD)或電子廻旋共振化學氣相沉積(ECRCVD),氣體源分別為甲烷(CH4)、氫(H2)及氮(N2),成功地合成垂直與水平方向之碳奈米管。氧化方式成長SiO2中間層,使用物理化學氣相沉積(PVD)成長 Ti中間層與Co觸媒薄膜於矽基材上。施行氫電漿之前處理,使得鈷觸媒形成均勻分佈之奈米顆粒,以利碳奈米管之後續成長。而合成之奈米結構利用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、高顯析度穿透式電子顯微鏡、(HRTEM)電子繞射(ED)、X-ray繞射(XRD)、拉曼光譜儀(Raman spectroscopy)、歐傑電子能譜儀(AES)和I-V量測儀來分析其特性。
在利用微波電漿化學氣相沉積法(MPCVD)成長碳奈米管方面,其結果顯示,成長出垂直方向且高密度排列之中空多管壁碳奈米管(MWCNTs)。而直徑大約100 nm之單顆鈷觸媒,成長出多根直徑約10 ~15 nm之多管壁碳奈米管,並將此成長機制稱為tip-root 或 base-root growth成長模式。關於中間層材料之影響,SiO2中間層較傾向形成tip-root growth之鈷觸媒輔助碳奈米管,Ti中間層較傾向形成base-root growth之鈷觸媒輔助碳奈米管。原因為100 nm之 SiO2中間層有效地阻擋鈷觸媒與矽基材之化學鍵結,而成長出tip-root growth碳奈米管,Ti中間層促進Co與矽基材形成矽化物(Silicide),成為較強之鍵結而成長出base-root growth碳奈米管,並利用SEM、TEM和XTEM結構分析下發現,多管壁碳奈米管成長機制與中間層不同之影響。而成長氣體若從H2改變為N2,將使得多管壁碳奈米管之結構由中空管徑變成竹節狀結構,原因為氮原子取代氫原子而造成。
在利用電子迴旋共振電漿化學氣相沉積法(ECRCVD)成長碳奈米管方面,其結果顯示,若使用Ti foil置於矽基材上面一定距離後,並且加一負偏壓於Ti foil上,發現碳奈米管其成長方向,為平行基材表面成長。TEM分析顯示水平或垂直方向碳奈米管皆為多管壁結構,且二者其成長機制皆屬於Tip growth模式。成長出平行於基材表面之碳奈米管,原因為使用Ti foil置於預成長碳管基材上,並導引成長氣流方向及電場輔助下而形成。I-V量測結果發現,水平方向碳奈米管其場發射性質優於垂直方向。當電流密度為 1 µA/cm2時,水平方向、垂直方向碳管其啟始電場分別為 2 V/µm、3 V/µm。在電場 10 V/µm 時,水平方向碳管電流密度J > 40 mA/cm2,垂直方向為 30 ~ 35 mA/cm2之間。因此可知,水平方向碳奈米管其場發射性質優於垂直方向之碳管。
結果顯示碳奈米管之成長方向、成長機制及其性質,皆可利用不同氣體源,基材偏壓、中間層材料、H2電漿前處理及導引成長氣流來加以操控。

ABSTRACT
In order to develop the effective process to control the nanostructure, orientation and properties of carbon nanotubes (CNTs) and to examine the relationships among the CNTs growth and interfacial reactions, The vertically and horizontally oriented CNTs were successfully synthesized on interlayer-coated Si wafer by MPCVD or ECRCVD with CH4, H2 or N2 as source gases and Co as catalyst. The SiO2 interlayer was obtained by wafer oxidation. The Ti interlayer and Co catalyst films were deposited on Si wafer by physical vapor deposition (PVD) method. The interlayer and Co catalyst-coated substrates were then followed by H2 plasma pretreatment to become the well-distributed nano-particles to act as catalyst for CNTs growth. The deposited nano-structures were characterized by SEM, TEM, HRTEM, XRD, Raman spectroscopy, AES and I-V measurements.
The results show that the CNTs deposited by MPCVD are dominated by the vertically-oriented and well-aligned dense CNTs. In general, a single catalyst with an average size of ~ 100 nm could grow many MWCNTs of 10 ~ 15 nm in tube diameter, as so called “root-growth model”. About effect of interlayer materials, the SiO2 interlayer prefers to form tip-root growth Co-assisted CNTs, and the Ti interlayer the base-root growth Co-assisted CNTs. This is due to the fact that the 100 nm SiO2 interlayer can effectively block the chemical bonding of Co with the Si substrate, and both Ti and Co can form silicides to promote the bonding with the substrate and so base-root growth of CNTs, which are in agreement with the results of XRD and XTEM analyses. Regarding effect of replacing H2 by N2 gases, the results indicate that the hollow CNTs will become bamboo-like CNTs. It may relate to the stressing effect by replacing C atoms with N atoms in the CNTs lattice.
To examine the effect of flow guiding by a biased Ti foil on top of the specimen, the results depict that the horizontally oriented tip-growth CNTs can be obtained by ECR-CVD. The horizontal oriented CNTs show better field emission properties than the vertical oriented CNTs. For horizontal oriented CNTs, turn-on electric field (Eturn-on) defined at J = 1 µA/µm can go down to 2 V/µm, and J value can be greater than 40 mA/cm2 (at 10 V/µm); and in contrast, Eturn-on = 3 V/µm, J = 30 ~ 35 mA/cm2 (at 10 V/µm) for vertically oriented CNTs. This is due to the fact that the field emission of the vertically oriented CNTs is more greatly restricted by the catalysts at the tips, and the defect emission from the body of CNTs is effectively hided; in contrast to field emission from the body instead of tips for the horizontally oriented CNTs.
In summary, the results imply that the orientation, growth mechanism, the nanostructures and properties of CNTs can be controlled by manipulating the source gases, the substrate bias, interlayer application, H2 plasma pretreatment and flow guiding.

目錄
中文摘要…………………………………………............................i
英文摘要............................................................................................iv
致謝....................................................................................................vi
目錄....................................................................................................vii
符號說明............................................................................................x
表目錄................................................................................................xii
圖目錄...............................................................................................xiii
第一章 前言……………………………………….....……………….1
第二章 文獻回顧………………………………………….....……….4
2.1 奈米材料結構及其性質……………………………….…....………….4
2.2單管壁碳奈米管之合成方法…………………………….....…....…...10
2.3 多管壁碳奈米管之合成方法………………………………..………..12
2.4碳奈米管之可能應用……………………………………..…………..14
2.4.1 電子發射元件……………………..……………....……………14
2.4.2 碳奈米管場效電晶體……………..………....…………………16
2.4.3 掃描式探針顯微鏡之針尖…………......………………………18
2.4.4 能源儲存……………………………......………………………19
2.4.5 複合材料………………………………......……………………21
2.4.6 感測器及生醫材料……………………......……………………21
第三章 垂直基材排列碳奈米管之合成及鈷矽之界面反應……......22
3.1 簡介……………..…………………………………………………….22
3.2 實驗方法…………………..…………………………………………..23
3.2.1 MPCVD設備系統…………….....…………..……....…………23
3.2.2 反應氣體、試片材料及其前處理……….........………..……...24
3.2.3碳奈米管沉積條件、步驟及流程….........……………..……...24
3.2.4分析方法…………………….........…………………..………...26
3.3 結果與討論─垂直基材排列碳奈米管之合成及鈷矽界面反應....29
3.3.1 SEM形貌…………………………………………....………….29
3.3.2 TEM微結構…………………………………....…………….....32
3.3.3多根奈米管成長於單顆觸媒之成長機制…….....………….….34
3.4 結果與討論─鈷矽界面反應及竹節狀奈米管成長機制……...…….35
3.4.1 截面SEM形貌…………………………………....……………35
3.4.2 TEM微結構………………………….………....……………....36
3.4.3 HRTEM和電子繞射 (ED).....…..…………….....……….……..37
3.4.4 矽基材,鈷觸媒和奈米管製程中之XRD分析比較…....…....38
3.4.5 Auger分析....................................................................................39
3.4.6 鈷矽界面反應與成長機制之關係…..……………...…………..39
3.5 結論……………...………………………………………………….…41
第四章 平行基材排列碳奈米管之合成…………….....………………..43
4.1 簡介………………...………………………………………………….43
4.2實驗方法…………………...……………………………………...…..44
4.2.1 ECR-CVD設備系統....................................................................44
4.2.2試片條件、觸媒準備方法及反應氣體.......................................45
4.2.3碳奈米管沉積條件、步驟及流程...............................................45
4.2.4分析方法.......................................................................................46
4.3結果與討論……………....……………………………………...…….47
4.3.1 影響奈米管之成長方向的主要參數……...........................…...47
4.3.2 垂直與水平排列奈米管之性質異同……………....…………..49
4.3.3 結論…………………....……………………………………......51
第五章 總結………………….................................................................…...52
第六章 未來展望………….....................................................................…...54
參考文獻………………………………......……………………………….…55
表……………….......…………………………………………………………..64
圖…………………….......……………………………………………………..69
個人簡歷…………….....……………………………………………………121
參考文獻
1. Adrian B., P. Hadley, T. Nakanishi, C. Dekker, Science, 294 (2001) 1137-1320.
2. Akamatsu, K., and S. Deki, J. Mater. Chem., 8 (1998) 637-.
3. Alivisator, A. P., Science, 271 (1996) 933-.
4. Amaratanga, G. A. J., and S. R. P. Silva, Appl. Phys. Lett., 68 (1996) 2529.
5. Avdeev, V., V. Nalimova, and K, Semenenko, High Pressure Res., 6 (1990) 11-.
6. Bachtold, A., P. Hadley, T. Nakanishi, and C. Dekker, Science, 294 (2001) 1317-1320.
7. Baker, R. T., Carbon 27, 315 (1989).
8. Barthlott, W., and C. Neinhuis, Planta, 202 (1997) 1-.
9. Baughman, R. H., C. Cui, A. A. Zhakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science, 284 (1999) 1340-1344.
10. Bethune, D. S., C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyes, Nature, 363 (1993) 605-
11. Bower C., O. Zhou, W. Zhu, A. G. Ramirez, G. P. Kochanski, S. Jin, in Amorphous and Nanostructured Carbon, J. P. Sullivan, J. R. Robertson, B. F. Coll, T. B. Allen, O. Zhou (Eds.) (Mater. Res. Soc.)(in press 2002)
12. Bower C., O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Appl. Phys. Lett., 77 (2000) 2767-2769.
13. Bower, C., Z. Wei, J. Sungho, and Z. Otto, Appl. Phys. Lett., 77 (2000) 830-.
14. Brito, P. J., K. S. V. Santhanam, A. Rubio, A. Alons, and P. M. Ajayan, Adv. Mater., 11 (1999) 154-.
15. Britto, P. J., K. S. V. Santhanam, and P. M. Ajayan, Bioelectrochem. Bioenergetics, 41 (1996) 121-.
16. Brodie, I., C. Spindt, Adv. Electron. Electron Phys., 83 (1992) 1-.
17. Brus, L. E., J. Phem. Chem. 98 (1994) 3575-.
18. Cassel, A. M., N. R. Franklin, T. W. Tombler, E. M. Chan, J. Han, and H. Dai, J. Am. Chem. Soc., 121 (1999) 7975-.
19. Castellano, J. A., Handbook of Display Technology (Academic Press, San Diego) 1992
20. Chambers, A., C. Park, T. T. K. Baker, N. M. Rodringuez, J. PHYS. Chem. B, 102 (1998) 4253-.
21. Che, G., B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Nature, 393 (1998) 346-.
22. Chen, P., X. Wu, J. Lin, K. Tan, Science, 285 (1999) 91-.
23. Chen, Y., T. S. David, and G. Liping, Appl. Phys. Lett., 76 (2000) 2469.
24. Chio, W. B., D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Ha, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett., 75 (1999) 20.
25. Chung, S. H., Y. Wang, L. Persi, F Croce, S. G. Greenbaum, B. Scrosati, and E. Plichta, J. Power Sources, 97 (2001) 644-.
26. Collins, P. G., M. S. Arnold, and P. Avouris, Science, 292 (2001) 706-709.
27. Corcoran, Zorpette, Sci. Ame., (1997)
28. Dahn, J. R., T. Zhang, Y. Liu, and J. S. Xue, Science, 270 (1995) 590-.
29. Dai, H., A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert., and R. E. Smalley, Chem. Phys. Lett., 260 (1996) 471.
30. Dai, H., J. H. Hafner, A. G. Rinzler, D. T. Colber, and R. E. Smalley, Nature, 384 (1996) 147-150.
31. Dai, H., N. Franklin, J. Han, Appl. Phys. Lett., 73 (1998) 1508-.
32. Dean, K. A., B. R. Chalamala, Appl. Phys. Lett., 76 (2000) 375.
33. Deki, S., K. Sayo, T. Fuita, A. Yamada, and S. Hayashi, J. Mater. Chem., 9 (1999) 943-.
34. Derycke, V., R. Martel, J. Appenzeller, and Ph. Avouris, Nano Letter, (2001)
35. Diener, M. D., N. Nichelson, and J. M. Alford, J. Phys. Chem. B, 104 (2000) 9615-9620.
36. Dillon, A. C., K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature, 386, (1997) 377-.
37. Dresselhaus, M. S.,G. Dresselhaus and P. Avouris (Eds), Carbon Nanotubes Synthesis, Structure, Properties, and Applications, Springer Press, 2001, pp.3-5
38. Dresselhaus, M. S., G. Dresselhaus, P. C. Eklund, Science of Fullerences and Carbon Nanotubes (Academic Press, New York, 1996)
39. Dresselhaus, M. S., K. A. Williams, P. C. Eklund, MRS Bull., 24 (1999) 45-.
40. Endo, M., and H. W. Kroto, J. Phys. Chem., 96 (1992) 6941.
41. Fan, S., M. C. Lapline, N. Franklin, T. Tombler, A. Cassell, H. Dai, Science, 283 (1999) 512-514.
42. Frackowiak, E., S. Gutier, H. Gucher, S. Bonnamy, and F. Beguin, Carbon, 37 (1999) 61-.
43. Franklin, N. R., and H. Dai, Adv. Mater., 12 (2000) 890.
44. Fuhrer, M. S., J. Nygård, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. McEuen, Science, 288 (2000) 494-497.
45. Fuller, R. B., In W. Marln (ed.), The Artifacts of R. Buckminster Fuller: A Comprehensive Collection of His Designs and Drawings, Garland Publishers, Inc., New York (1984).
46. Gao, B., A. Kelinhammes, X. P. Tang, C. Bower, Y. Wu, and O. Zhou, Chem. Phys. Lett., 307 (1999) 153-.
47. Gavillet, J., A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J. C. Charlier, Phys. Rev. Lett. 87 (2001) 275504-1.
48. Gleiter, H., Prog. Mater. Sci., 32 (1989) 223-.
49. Hamada, H., S. Sawada, A. Oshiyama, Phys, Rev. Lett., 68 (1992) 1581.
50. Han, Y. S., J. K. Shin, and S. T. Kim, J. Appl Phys., 90 (2001) 5731-5734.
51. Hellstern, E., H. Fecht, Z. Fu, W. L. Johnson, Appl. Phys. Lett., 65 (1989) 305-.
52. Henk, W. C. Postma, T. Teepen, Z. Yao, and M. Grifoni, Science, 293 (2001) 76-79.
53. http://cnst.rice.edu./smalleygroup/image_gallery.html
54. http://www.nobel.se/chemistry/laureates/1996/press.html
55. http://www.pa.msu.edu/cmp/csc/nanotube.html
56. http://www.zyvex.com/nanotech/feynman.html
57. Huang, Y., X. Duan, Y. Cui, L. J. Lauhon, K. Kim, and C. M. Lieber, Science, 294 (2001) 1313-1317.
58. Iijima, S., Mater. Sci. Eng. B., 19 (1993) 172.
59. Iijima, S., Nature, 354 (1991) 56-
60. Iijima, S., P. M. Ajayn, and T. Ichihashi, Phys. Rev. Lett., 69 (1992) 3100.
61. Iijima, S., T. Ichihashi, Nature, 363 (1993) 603-
62. Jason, H. Hafnet, C. L. Cheung, C. M. Lieber, Nature, 398 (1999) 761-762.
63. Jimenez, J. R., L. J. Schowalter, L. M. Hsung, K. Rajan, S. Hashimoto, R. D. Thomson, and S. S. Lyer, J. Vac. Sci. Tchnol. A, 8 (1990) 3014.
64. Kasumov, A. Y., R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. I. Khodos, Y. B. Gorbatov, V. T. Volkov, C. Journet, M. Burghard, Science, 284 (1999) 1508-1511.
65. Kim, G. B., H. K. Baik, and S. M. Lee, Appl. Phys. Lett., 69 (1996) 3498-
66. Kong, J., H. T. Soh., A. M. Cassel, C. F. Quate, and H. Dai, Nature, 395 (1998) 878-.
67. Kong, J., N. R. Franklin, C. Zhou, M. C. Chapine, S. Peng, K. Cho, and H. Dai, Science 287 (2000) 622-625.
68. Kroto, H. W., J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature, 318 (1985) 162-163.
69. Li, W. Z., S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science, 274 (1996) 1701-1703.
70. Liang, W., M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park, Nature, 411 (2001) 665-669.
71. Lin, C. H., H. L. Chang, M. H. Tsai and C. T. Kuo, Diam. Relat. Mater., (2002) ( in press).
72. Liu, C., Y. Y. Fan, M. Lu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, Science, 286 (1999) 1127-.
73. Mccreey, R. L., Electroanal. Chem., 17 (ed. A. J. Bard) (Marcel Dekker, New York 1991).
74. Mintmire, J. W., B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68 (1992) 631-.
75. Morpurgo, A. F., J. Kong, C. M. Mrcus, H. Dai, Science, 286 (1999) 263-265.
76. Murray, C. B. et al., J. Am. Chem. Soc., 115 (1993) 8706-.
77. Nicolet, M. A., and S. S. Lau, VLSI Electronics Microstructure Science (Academic, New York, 1983), Vol. 6.
78. Niu, C., E. K. Sichel, r. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett., 70 (1997) 1480.
79. Overney, G., W. Zhong, and D. Tomanek, Phys. D 27 (1993) 93.
80. Pan, Z., S. S. Xie, B. Chang, and C. Wang, Nature, 394 (1998) 631-632.
81. Postma, H. W. Ch., T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Science, 293 (2001) 76-79.
82. Qin, L. C., and S. Iijima, Chem. Phys. Lett., 269 (1997) 65,
83. Randall, L. V. W., M. T. Thomas, and E. C. Valerie, J. Phys. Chem. A, 104 (2000) 7209-7217.
84. Rinzler, A. G., J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, D. Colbert, R. E. Smalley, Science 269 (1995) 1550-.
85. Rosen, R., W. Simendinger, C. Debbault, H. Shimoda, L. Fleming, B. Stoner, O. Zhou, Appl. Phys. Lett. 76 (2000) 1179.
86. Rueckes, T., K. Kim, E. Joselevich, G. Y. Tseng, C. Cheung, and C. M. Lieber, Science, 289 (2000) 94-97.
87. Rupp, J., R. Birringer, Phys. Rev. Lett., 36 (1987) 7888
88. Saito, R., M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett., 60 (1992) 2204.
89. Saito, Y., K. Hamaguchi, T. Nshino, K. Hata, K. Tohji, A. Kasuya, Y. Nishina, Jpn. J. Appl. Phys., 36 (1997) L1340-1342.
90. Saito, Y., K. Nishikubo, K. Kawabata, and T. Matsumoto, J. Appl. Lett., 80 (1996) 3062-3067.
91. Saito, Y., M. Okuda, N. Fujimoto, T. Yoshikawa, M. Tomita, and T. Hayashi, J. Appl. Phys., 33 (1994) L526.
92. Saito, Y., s. Uemura, K. Hamaguchi, Jpn. J. Appl. Phys., 37 (1998) L346
93. Salvetat, J. P., G. A. D., Briggs, J. M. Bonard, R. R. Basca, A. J. Kulik, T. Stockli, N. A. Burnham, L. Forro, Adv. Mater. 11 (1999) 161.
94. Sander, J. Tans, A. R. M. Verschueren, and C. Dekker, Nature, 393 (1998) 49-52.
95. Scott, A. W., Understanding Microwaves (Wiley, New York 1993)
96. Shirakawa, H., E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc. Chem. Commun., 587 (1977)
97. Soh, H. T., C. F. Quate, A. F. Morpurgo, C. M. Marcus, J. Kong, and H. Dai, Appl. Phys. Lett., 75 (1999) 627-.
98. Sohn, J. I., C. J. Choi, S. Lee, and T. Y. Seong, Appl. Phys. Lett., 78 (2001) 3130-3132.
99. Sohn, J. I., S. Lee, Y. H. Song, S. Y. Choi, K. L. Cho, and K. S. Nam, Appl. Phys. Lett., 78 (2001) 901-903.
100. Standler, R., Protection of Electronic Circuits from Over-voltages (Wiley, New York 1989)
101. Suzuki, S., and M. Tomita, J. Appl Phys., 79 (1996) 3739-.
102. Tans, S. J., A. R. M. Verschueren, and C. Dekker, Nature 393 (1998) 49-.
103. Thess, A., R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science, 273 (1996) 483-487.
104. Thomas R., K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Lieber, Science, 289 (2000) 94-97.
105. Thong, J. T. L., C. H. Oon, W. K. Eng, W. D. Zhang, and L. M. Gan, Appl. Phys. Lett., 79 (2001) 2811-2813.
106. Tibbetts, G. G., Carbon, 27 (1989) 756-747.
107. Tony, G., G. Flamant, J. F. Robert, B. Rivoire, J. Grial, and D. Laplaze, ASME, 124 (2002) 22-27.
108. Treacy, M. M. J., T. W. Ebbesen, J. M. Gbson, Nature, 381 (1996) 678.
109. Tsai, S. H., C. W. Chao, C. L. Lee and H. C. Shih, Appl. Phys. Lett., 74 (1999) 3462.
110. Tsang, S. C., Y. K. Chen, P. J. F. Harris, and M. L. H. Green, Nature, 372 (1994) 159-.
111. Tseng, G. Y., and J. C. Ellenbogen, Science, 294 (2001) 1293-1294.
112. Tsukagoshi, K., B. W. Alphenaar, and H. Ago, Nature, 401 (1999) 572-574.
113. Wang, Q. H., A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. H. Chang, Appl. Phys. Lett., 72 (1998) 2912-.
114. Ward, J., The Artifacts of R. Buckminster Fuller., Gardland publishers, Inc., New York (1985). Vol. 3 and 4.
115. Winter, M., J. Besenhard, K. Spahr, and P. Novak, Adv. Mater, 10 (1998) 725-.
116. Wong, S. S., E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Nature, 394 (1998) 52-.
117. Wu, G. T., C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, and W. Z. Li, J. Electrochem. Soc., 146 (1999) 1696-1701.
118. Yamamoto, K., Y. Koga, S. Fujiwara, and M. Kubota, Appl. Phys. Lett., 69 (1996) 4174-4175.
119. Yu, M, O. Lourie, M. Dyer, K. Mooni, T. Kelly, R. S. Ruoff, Science, 287 (2000) 637.
120. Zhang, S. L., J. Cardenas, F. M. d’Heurle, B. G. Svensson, and C. S. Petersson, Appl. Phys. Lett., 66 (1995) 58-
121. Zhang, Y., A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N, Morris, E. Yenilmez, J. Kong, and H. Dai, Appl. Phys. Lett., 79 (2001) 3155.
122. Zhou, C., J. Kong, and H. Dai, Appl. Phys. Lett., 76 (2000) 84-.
123. Zhou, O., R. M. Fleming, D. W. Murphy, C. T. Chen, R. C. Haddon, A. P. Ramirez, and S. H. Glarum, Science, 263 (1994) 1744-.
124. Zhu, W., G. Kochanski, S. Jin, Science, 282 (1998) 1471-.
125. 汪建民編, 材料分析, 1998, pp659-672.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔