跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇旺申
研究生(外文):Wang-Shen Su
論文名稱:各類型奈米氧化鋯漿料之合成及其對銅與淺溝槽隔離化學機械研磨之效應
論文名稱(外文):Synthesizing Various Types Nanosize Zirconia Formulated Slurry and Study of Their Effects on Cu- and STI- Chemical Mechanical Polishings
指導教授:涂肇嘉蔡明蒔蔡明蒔引用關係
指導教授(外文):George C. TuMing-Shih Tsai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:136
中文關鍵詞:氧化鋯奈米粉體改良式溶膠-凝膠法銅化學機械研磨淺溝槽隔離
外文關鍵詞:ZirconiaNano-powderModified Sol-Gel MethodCu CMPSTI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文研究各類型奈米氧化鋯漿料之製造及其對銅及淺溝槽隔離化學機械研磨之影響。在銅化學機械研磨方面,使用YxZ1-xO2-x/2砥粒(abrasive)作為研磨漿料(slurry)。使用溶膠-凝膠法合成YxZ1-xO2-x/2 (x=0, 0.03, 0.08 及0.12)粉末。以不同釔含量摻雜於氧化鋯砥粒中,並對晶體結構、粒徑大小、比表面積、研磨速率及表面粗糙度加以探討。熱處理在800℃時,不同釔含量粉體之晶相變化分別為: ZrO2(單斜晶)、 Y0.03Zr0.97O1.985(單斜晶+正方晶)、Y0.08Zr0.92O1.96(正方晶+立方晶) 及 Y0.12Zr0.88O1.94(立方晶)。以BET及TEM對粒徑作分析,發現釔含量增加時其粒徑隨之減小。以YxZ1-xO2-x/2對銅膜進行研磨,當釔含量增加則研磨速率隨之增加。對銅膜研磨得到較高之研磨速率及粗糙度為具有較大比表面積之砥粒(Y0.12Zr0.88O1.94)。
在淺溝槽隔離化學機械研磨方面,使用改良型多孔氧化鋯、水合氧化鋯膠體及改良型商用二氧化矽膠體作為漿料。在改良型多孔氧化鋯中,結晶溫度會隨著高分子含量增加而增加。A10及B50之一次粒徑比C1小,且其比表面積較C1大。判斷C1粉末含有較大之孔洞及孔洞直徑,此有可能會造成比表面積變大,導致密度降低而促使研磨速率增加。以改良式溶膠-凝膠法合成水合氧化鋯膠體,探討不同起始物濃度,溫度及不同溶劑處理,對其二次粒徑分佈、粒體表面電荷、研磨速率及表面粗糙度之變化。經乙醇處理之水合氧化鋯,由於空間障礙之原故,乙氧基能使粒子與粒子達到分離,因而使粒徑分佈窄且均勻。在經水處理之水合氧化鋯膠體中,當起始物濃度及溫度上升其研磨速率隨之上升。在改良型商用二氧化矽膠體中,當加入漿料中之Zr4+濃度增加,其研磨速率會隨之上升。

Various types zirconia formulated slurries were investigated for copper chemical mechanical polishing (Cu-CMP) and shallow trench isolation chemical mechanical polishing (STI-CMP) processes. Cu-CMP was investigated with slurries containing YxZr1-xO2-x/2 abrasives. YxZr1-xO2-x/2(x=0、0.03、0.08 and 0.12) powders were synthesized by Sol-gel method. The crystalline structure, particle size, specific surface area, also with the removal rates and surface roughness after polishing with using slurries formulated with each powders of various concentrated yttrium doped zirconia powders were investigated. The crystalline phase transformation calcined at 800℃ was observed for the various yttrium concentrations, ZrO2, Y0.03Zr0.97O1.985, Y0.08Zr0.92O1.96 and Y0.12Zr0.88O1.94 , which were m(monoclinic), m+t(tetragonal), t+c(cubic) and c phases respectively. Particle sizess were measured by BET and TEM analyses, and it was formed that the particle size decreased with increasing yttrium concentration. For polishing copper substrates with YxZr1-xO2-x/2 abrasives formulated slurries, the results showed that the removal rate increased with increasing yttrium concentration. Higher removal rates and longer surface roughness were obtained as polishing with larger specific surface area abrasives.
STI-CMP was investigated by polishing with slurries containing modified porous zirconia, colloidal zirconia hydrogel and modified commerial colloidal silica slurry. In the synthesis of modified porous zirconia, crystallization temperature increase with increase of polymer concentration. The primary particles sizes of A10 were B50 are smaller than that of C1. The C1 sample is reckoned to contain more larger pore with bigger pore diameter, which rendering possibly smaller BET specific area with reduced density. Due to the reduced density, slurry with C1 abrasive would give rise to larger CMP removal rate. Zirconia hydrogel was synthesized by modifying sol-gel method. The secondary particle size distribution and, zeta potential of hydrogel zirconia abrasives, and the resulted polishing removal rates and surface roughness were investigated in teams of various concentration, synthesis temperature and solvent media. Zircona hydrogel synthesized in ethanol medium, the ethoxyl groups act to prevent close approach of individual particles, due to its steric effect and absence of H-bonding, therefore, resulting in narrow and uniform particle size distribution. By water treatment of zirconium hydrogel, the removal rate of TEOS oxide film increases, as stock solution concentration and/or temperature increase. In the study of modified commercial colloidal silica slurry, the CMP removal rates depend on the concentration of Zr4+ salts additive. The removal rate increases as Zr4+ concentration increases.

Contents
ABSTRACT (IN CHINESE) I
ABSTRACT (IN ENGLISH) III
ACKNOWLEDGEMENTS V
CONTENTS VI
TABLE CAPTIONS IX
FIGURE CAPTIONS X
CHAPTER 1 1
INTRODUCTION 1
1.1 Motivation 1
1.1.1 Abrasives of CMP Slurry 1
1.1.2 Copper Chemical Mechanical Polishing 3
1.1.3 Shallow Trench Isolation Technology for Chemcial Mechanical Polishing 4
1.2 Thesis outline 5
CHAPTER 2 7
FUNDAMENTAL CONCEPTS AND EXPERIMENTAL METHODS 7
2.1 Background 7
2.1.1 Metal CMP Mechanisms 7
2.1.2 Oxide CMP Mechanisms 9
2.1.3 Stability of Colloidal Dispersions in Aqueous Medium 11
2.2 Experimental 15
2.2.1 Characterization of Abrasives being studied 15
2.2.2 Sample Preparation 22
2.2.3 Chemical-Mechanical Polishing Process 27
2.2.4 CMP Removal Rate and Non-Uniformity 28
CHAPTER 3 29
SYNTHESIS AND POLISHING PERFORMANCE OF YTTRIUM DOPED ZIRCONIA ABRASIVES 29
3.1 Background 29
3.2 Experimental 31
3.3 Experimental Results 32
3.3.1 Sol-gel Synthesis and Characterization of YxZr1-xO2-x/2 Nanopowders 32
3.3.2 Cu-CMP with YxZr1-xO2-x/2 abrasives 35
3.3.2.1 Blank slurry for Cu polishing 35
3.3.2.2 Hydrogen peroxide — formulated slurry for polishing 35
3.4 Discussion 36
CHAPTER 4 41
SYNTHESIS OF LOW DENSITY ZRO2 ABRASIVE FOR SUSPENSION STABILITY IN AQUEOUS SOLUTION 41
4.1 Background 41
4.2 Experimental 42
4.2.1 Slurry Preparation 42
4.2.2 Characterization of the slurry 43
4.2.3 Chemical Mechanical Polishing 44
4.3 Experimental Results 44
4.3.1 Modified porous zirconia slurry 44
4.3.2 Colloidal Zirconium Hydrogel Slurry 46
4.3.3 Modified Colloidal Silica Slurry 49
4 4 Discussion 51
4.4.1 Modified Porous Zirconia Slurry 51
4.4.2 Colloidal Zirconium Hydrogel Slurry 53
4.4.3 Modified Colloidal Silica Slurry 55
CHAPTER 5 57
CONCLUSIONS 57
REFERENCE 60
VITA 112
PUBLICATION LIST 113

Reference
[1] P. H. Singer, “Searching for Perfect Planarity,” Semiconductor International, 15, pp.44-48, March 1992.
[2] G. A. Parks, “The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems,” Chem. Rev., 65, pp.177-198, 1965.
[3] J. M. Steigerwald, S. P. Murarka and R. J. gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, Inc., New York, 1997.
[4] R. S. Lynn, et. al., “On the particle size effect in slurry erosion, in Wear of Materials,” American Society of Mechanical Engineers, pp. 77-82, 1991.
[5] A. K. Sinha, J. A. Cooper, JR., and H.J. Levinstein, “Speed limitations due to interconnect time constants in VLSI integrated circuits”, IEEE Electron Device Lett. Vol. EDL-3, no.9, pp. 90-92, April 1982.
[6] H. Landis, P. Burke, W. Cote, W, Hill, C. Hoffman, C. Kaanta, C. Koburger, W. Lange , and S. Luce, Thin Solid Films, 220, 1 (1992).
[7] F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson and M. B. Small, “Chemical-mechanical polishing of fabricating patterned W metal as chip interconnects,” J. Electrochem. Soc., vol. 138, no. 11, pp. 3460-3465, Nov. 1997.
[8] L. M. Cook, et al., “Theoretical and practical aspects of dielectric and metal CMP,” Semiconductor International, Nov. 1995, pp. 141-144.
[9] J. M. Steigerwald, S. P. Murarka, J. Ho, R. j. Gutmann and D. J. Duquette, “Mechanisms of copper removal during chemical mechanical polishing,” J. Vac. Sci. Technol. B, 13 (6), pp. 2215-2218, Nov./Dec. 1995.
[10] S. sivaram, et. al., Solid State technology, vol.35, May pp.87-91, 1992.
[11] Millot, “ Geology of Clay”, Springer-Uerrlag, New York, pp.55-62, 1970.
[12] L. M. Cook, “Chemical processes in glass polishing”, J. Non-crystalline Solids, Vol. 120, pp. 152-171, 1990.
[13] Chia-Wen. Huang, “Characterization of Abrasives for Chemical-Mechanical Polishing of Silicon Dioxide Thin Films”, Master dissertion, National Chiao-Tung University, 1998.
[14] R. J. Pugh and L. Bergstrom, Surface and colloid chemistry in advanced ceramics processing, Marcel Dekker, Inc., New York, 1994.
[15] Overbeek, J. Th. G., The interaction between colloid particles, in Colloid Science (H. R. Kruyt, et.), Elsevier, Amsterdam, 1952.
[16] R. J. Hunter, In Introduction to Modern Colloid Science, Oxford University Press Inc., New York, 1993.
[17] R. P. Donovan, T. Yamamoto, and R. Periasamy, “Particle Deposition, Adhesion, and Removal,” Mater. Res. Soc. Symp. Proc., 315, pp.3-22, 1993.
[18] B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Wesley, Reading, MA, (1978) 99-103.
[19] Brunaur, S., Emmett, P. H., and Teller, “Adsorption of gases in multimoelecular layers,” J. Am. Chem. Soc., 60, pp.309-319, 1938.
[20] B. I. Lee, and E. J. A. Pope, Chemical Processing of Ceramics, Marcel Dekker, Inc., New York, 1994.
[21] W. Kern, Handbook of Semiconductor Wafer Cleaning Technology, New Jersey, Novyes Publication, 1993.
[22] R. J. Hunter, Zeta Potential in Colloid Science, Principles and Applications, Academic Press, New York, 1981.
[23] Peter W. Lee, et. al., Powder Metal Technologies and Applications, ASM Handbook, vol.7, pp.220
[24] B. J. Marlow, D. Fairhurst, and H. P. Pendse, “Colloid Vibration Potential and the Electrokinetic Characterization of Concentrated Colloids,” Langmuir, 4 [3] pp.611-626 (1988).
[25] J. P. Sibilia, A Guide to Materials Characterization and Chemical Analysis, 2nd ed, VCH Publishers, Inc., New York, 1996.
[26] A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B, vol. 34, no. 10, pp.7018-7026, November 1986.
[27] J. Szczyrbowski, K. Schmalzbauer and H. Hoffmann, “Optical properties of rough thin films,” Thin Solid Films, 130, pp.57-73, 1985.
[28] G.Nanz et al., “Modeling of chemical-mechanical polishing: A review,” IEEE, (1995).
[29] M. J. Mayo, International Materials Reviews, 41 (1996) 85-115.
[30] T. Izumitani, in: Treatise on Material Science and Technology. Academic Press, Vol. 17, pp. 115, 1979.
[31] K. Bourne, F. Canning and R. Pitkethley, J. Phys. Chem. Vol. 17, pp. 2197, 1970.
[32] 杜正恭, “陶瓷技術手冊(下),” 產業科技發展協會, 第二十一章, 中華民國台北市, 民國八十三年.
[33] M. Ruhle et al., “Phase transformations in ZrO2-conntaining ceramics: the martensitic reaction in t-ZrO2,” Adv. Ceram., 12, 14, (1984).
[34] R. Stevens, Zirconia and Zirconia Ceramics. Magnesium Elektron Ltd., U. K., (1986).
[35] C. P. Wong, Polymer for Electronic and Photonic Applications, Academic Press Inc., San Diego, 1993.
[36] N. N. Ghosh and P. Pramnik, NanoStructured Materials, 8 (1997) 1041-1045.
[37] J. Y. Chang-Jean, W. S. Su and M. H. Huang, Journal of Materials Science and Engineering, 32 (2000) 179-185.
[38] M. H. Chiang, W. S. Su, S. T. Jow and M. H. Huang, ROC-Japan Joint Symposium on Biomaterials and Controlled Release, (2001)161-167.
[39] W. S. Su, J. Y. Chang-Jean and M. H. Huang, accepted by Journal of Materials Science and Engineering (2002).
[40] G. C. Tu, M. S. Tsai, M. H. Huang and W. S. Su, “Synthesis of YxZr1-xO2-x/2 Nanopowders by Sol-gel Method for CMP Application”, Symposium on Nano Device Technology 2001, National Science Council, Hsinchu, Taiwan, pp. 337-340.
[41] W. S. Su, G. C. Tu, M. S. Tsai and M. H. Huang, “ Sol-gel Synthesis and Characterization of YxZr1-xO2-x/2 Nanopowders for CMP Application”, The 2001 annual conference of the Chinese Society for Materials Science, Taichung, Taiwan, P12-07.
[42] W. S. Su, G. C. Tu and M. S. Tsai, “Study on YxZr1-xO2-x/2 abrasives slurry for copper chemical mechanical polishing”,2001 Electronics Devices and Materials Symposia, Kaohsiung, Taiwan, P512-517.
[43] M.L. Rojas-Cervantes et al., J. Mater. Soc. 29 (1994) 3743.
[44] Junping Zhao, Wenhao Fan, Dong Wu, Yuhan Sun ., Journal of Non-Crystalline Solids. 261 (2000) 15-20.
[45] Young Tae Moon et al.,“Preparation of Monodisperse and Spherical Zirconia Powders by Heating of Alcohol-Aqueous Salt Solutions”, J. Am. Soc., 78(1995)2690-2694.
[46] Jyung-Dong Lin and Jenq-Gong Duh, “Coprecipitaion and Hydrothermal Synthesis Ultrafine 5.5 mol% CeO2- 2 mol% YO1.5-ZrO2 Powder”, J. Am. Soc., 80(1997)92-98.
[47] M. A. Blesa et al.,“Hydrous Zirconium Oxide,”J. Mater. Sci., 20 (1985) 4601-609.
[48] T. Kosmac, V. Krasevec, and R. Gopalakrishnan, “Influence of Water Removal Rate during Calcination on the Crystallisation of Zirconia from Amorphous Hydrous Precipitates”; pp. 161-76 in Proceedings of the 9th Geman Yugoslav Meeting on Materials Science and Development. Edited by W. A. Kaysser. KFA, Julich, Germany, 1989.
[49] Srinivasan Ramanathan et al.,“Dehydration and Crystallization Kinetics of Zirconia-Yttria Gels”, J. Am. Soc., 78(1995)429-32.
[50] X. Turrillas et al., J. Mater. Sci. Lett, 12 (1993)223.
[51] X. Bokhimi et al.,“Transformation of Yttrium-Doped Hydrated Zirconium into Tetragonal and Cubic Nanocrystalline Zirconia”, Journal of Solid State Chemistry, 142 (1999)409-418.
[52] G. Skandan, H. Hahn, and J. C. Parker, “Nanostructured YO: Synthesis and Relation to Microstructure and Properties,”Scr. Metall., 25(1991)2389-93.
[53] D. A. Skoog, D. M. West and F. J. Holler, in:Fundamentals of Analytical Chemistry, Vol.6 (Saunders College Publishing, New York, 1992) p.758-762.
[54] Hung-Wen Chiou and Lai-Juh Chen, ‘‘one step effective planarization of shallow trench isolation’’,IEEE, p199-201 (1998).
[55] T. Park et al., “A novel simple shallow trench isolation (SSTI) technology using high selsctive CeO2 slurry and liner SiN as a CMP stopper”, Symp. On VLSI Tech., p159-160 (1999).
[56] Ming Jiang et al., “On chemo-mechanical polishing (CMP) of siicon nitride (Si3N4) workmaterial with various abrasives”, Wear, 220, p59-71 (1998).
[57] Mary Sue Kaliszewski and Arthur H. Heuer, ‘‘Alcohol interaction with Zirconia powders’’, J. Am.Ceram. Soc., 73 (6) p1504-509 (1990).
[58] Mercera P. D. L et al., J. Mater. Sci, 1992, 27, 4890.
[59] R. C. Mackenzie (Ed.), Differential Thermal Analysis, vol. 1, ch. 4, Academic Press, London, 1970.
[60] Wolfram Stichert and Ferdi Schuth, “Influence of Crystallite Size on the Properties of Zirconia”, Chem. Mater., 10(1998)2020-26.
[61] A. K. Mukherji, Analytial Chemistry of Zirconium and Hafnium, Pergamon Press, Oxford,1970, p.1.
[62] C. F. Baes and R.E. Mesmer, The Hydrolysis of Cations, Wiley, New York, 1976, p.155.
[63] T. E. Petroff, M. Sayer, S. A. M. Hesp.,”modification of ceramic dispersions using zirconium hydrogel”, Colloids and Surfaces A: Physicochem. Eng., 99(1995)151-159.
[64] A. Clearfield, G. P. D. Serrete and A. H. Khazi-Syed, Catal. Today, 20 (1994) 295.
[65] S. Ramarajan et al., “Effect of pH and Ionic Strength on Chemical Mechanical Polishing of Tantalum”, Electrochemical and Solid-State Letters, 5(2000) 232-34.
[66] Y. L. Wang et al., “A modified multi-chemical spray cleaning process for post shallow trench isolation chemical mechanical polishing cleaning application”, Thin Solid Films, 332 (1998)385-390.
[67] I. J. Malik, J. Zhang, A. J. Jensen, A Model Study for Post CMP Cleaning, MRS Proceeding, Spring 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top