(3.238.186.43) 您好!臺灣時間:2021/03/01 15:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林沛彥
研究生(外文):PeiYen Lin
論文名稱:氮化鎵V型缺陷成長機制與新氮化鎵磊晶層轉移技術
論文名稱(外文):The Growth Mechanism of GaN V-defect and Novel Method for GaN Epilayer Transfer
指導教授:吳耀銓
指導教授(外文):YewChung Sermon Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:氮化鎵V型缺陷磊晶層轉移側向覆蓋生長晶面生長速度大尺寸V型缺陷成長機制晶圓接合
外文關鍵詞:GaNV-defectepilayer transferELOGfacet grwoth ratelarge V-defectgrwoth mechanismwafer bonding
相關次數:
  • 被引用被引用:2
  • 點閱點閱:625
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:201
  • 收藏至我的研究室書目清單書目收藏:1
藉由大尺寸V型缺陷的發現,本研究得以利用新證據透過不同觀點探討氮化鎵V型缺陷的生成原因並解釋大尺寸V型缺陷的出現機制。由總體自由能的評估可知,雖然大尺寸V型缺陷與點狀開口之氮化鎵側向覆蓋生長晶體具有相同的晶面組成與互補的晶體外型,但兩者在熱力學與動力學上的意義並不相同,大尺寸V型缺陷於熱力學上是處於一種不穩定的能量狀態,因此大尺寸V型缺陷的出現應是來自於磊晶層成長時動力學影響所造成的結果。
本研究把V型缺陷的出現分成”成核”與”生長”兩個階段。”成核”過程與氮化鎵磊晶層表面特定區域極性的改變有關,而”生長”過程則取決於氮化鎵不同晶面相對生長速度不同的影響。磊晶層表面極性改變來自於生長時磊晶缺陷的產生,極性的改變造成了該區域生長速度與周遭環境不同並”成核”了V型缺陷。在V型缺陷”成核”後,其生長會因磊晶成長時環境的不同造成此缺陷消滅或進一步變大,而消滅或成長的因素主要控制於氮化鎵 面與(0001)面(或 面)生長競爭的結果。透過前人的研究結果分析得知氮化鎵這兩個晶面生長之相對速度與生長時的溫度、壓力、V/III比、參雜等因素有關,而這些因子背後的控制因素據本文推測是鎵反應源於生長基準面((0001)面)上是否具有足夠的能力或機會移動到能量上比較穩定的 面上並與氮反應源產生鍵結。利用V型缺陷”成核生長”模型並結合”晶面的生長速度差異”觀念來解釋V型缺陷的生成,不僅可以完全符合前人的相關研究結果,也可以合理解釋大尺寸V型缺陷的出現原因。
另外,將氮化鎵磊晶層與他種材料結合是實現光電整合積體電路與拓展氮化鎵材料應用範圍所需具備的關鍵技術。本論文提出一種新方法,透過氮化鎵異質側向生長技術、晶圓接合技術、與選擇性濕式蝕刻以達成高品質氮化鎵磊晶層與他種材料結合的目的。此方式經初步評估具有成本低廉、磊晶基板可回收、磊晶層品質良好、並適合於大量製造生產等潛在優點,值得進行更詳細的研究。
This thesis investigates and discusses the formation mechanism of V-defect on GaN epilayer based on the appearance of large V-defect. Although facets and crystal shape of large V-defect and dot patternd GaN ELOG are similar, they are not the same from the thermodynamic and kinetic point of view based on calculated total free energy. V-defect is a result of an unstable energy of state so the appearance of V-defect is mostly likely resulted from the kinetic control during epitaxy process.
The discussion of the formation of V-defect is divided into two parts: nucleation and growth. Nucleation step is related to the change of polarity of certain area on GaN epitaxy film; growth step is influenced by the different growth rate of different facets. Change in polarity on epitaxy film is due to the defect that is generated during the deposition of epitaxy film. The polarity of a certain area changes the growth rate of that specific area and thus nucleates a V-defect. After nucleation, V-defect turns into growth up or elimination depend on comparing of (0001) and facets of GaN which affected by different growth conditions. By previous research, the facets growth rate may change by varying temperature, pressure, V/III ratio, and dopant. We suppose upper factors are associate with Ga diffuse and bonding abilities. Better Ga diffuse ability and lower bonding probability may cause facet growth faster. The “nucleation and grwoth” model can reasonable explain both previous experience evidences without any exception and the formation of large V-defect.
This thesis also introduces a novel GaN epilayer transfer method. This method combines ELOG GaN, wafer bonding technology, and selective wet etching to acheieve the purpose of integration a high quality GaN film on a selective substrate. By preliminary evaluation, the novel method has many advantages and worth to advanced research.
中文摘要……………………………………………………………………Ⅰ
英文摘要……………………………………………………………………Ⅱ
誌謝…………………………………………………………………………Ⅲ
目錄…………………………………………………………………………Ⅳ
表目錄………………………………………………………………………Ⅶ
圖目錄………………………………………………………………………Ⅷ
第一章 序論…………………………………………………………………1
1.1. 研究動機與研究背景…………………………………………………3
1.2. 研究方法與研究步驟…………………………………………………7
第二章 文獻回顧與背景知識………………………………………………9
2.1. 氮化鎵材料的發展與晶體成長簡介…………………………………9
2.1.1. 氮化鎵單晶成長之熱力學探討與單晶基板的取得…12
2.1.2. 氮化鎵異質磊晶生長技術……………………………18
2.1.3. 氮化鎵磊晶層之差排缺陷介紹………………………23
2.1.4. 氮化鎵熱分解現象……………………………………24
2.2. 氮化鎵的晶體結構…………………………………………………27
2.3. 氮化鎵氫化物氣相磊晶法簡介……………………………………30
2.4. 氮化鎵V型缺陷相關研究介紹………………………………………34
2.5. 氮化鎵側向覆蓋生長法相關研究介紹………………………………39
2.5.1. 氮化鎵側向覆蓋生長法之缺陷分佈…………………41
2.5.2. 氮化鎵側向覆蓋生長法之改良………………………42
2.5.3. 生長參數對氮化鎵側向覆蓋生長晶體外型的影響…44
2.5.4. 氮化鎵側向覆蓋生長法之應用………………………50
第三章 V型缺陷形成機制探討……………………………………………52
3.1. 熱力學的探討…………………………………………………………57
3.1.1. 點狀開口側向覆蓋生長晶體之熱力學探討…………57
3.1.2. V型缺陷之熱力學探討…………………………………61
3.2. V型缺陷成長機制可能性探討………………………………………67
3.3. 氮化鎵不同晶面生長速率影響因素探討……………………………69
3.3.1. 溫度的影響……………………………………………74
3.3.2. 壓力與V / III比的影響………………………………76
3.4. V型缺陷成核與生長機制推論………………………………………79
3.5. 結果與討論……………………………………………………………84
第四章 濕式蝕刻轉移氮化鎵側向覆蓋生長磊晶層之方法介紹…………86
4.1. 氮化鎵基板轉移目的與前人相關研究介紹…………………………86
4.2. 濕式蝕刻結合側向覆蓋生長法轉移氮化鎵磊晶層之方法簡介……90
4.2.1. 新轉移方式製程簡介…………………………………90
4.2.2. 新轉移方式可能之優缺點分析製程簡介……………93
參考文獻……………………………………………………………………95
1.S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. Lett. Part 1 34, L797 (1995)
2.S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, T. Yamada, T. Matsushita, H. Kiyoko, and Y. Sugimoto, Jpn. J. Appl. Phys. Lett. 35, L74 (1996)
3.S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, T. Yamada, T. Matsushita, H. Kiyoko, and Y. Sugimoto, Jpn. J. Appl. Phys. Lett. 34, L1332 (1995)
4.Y.-F. Wu, B.P. Keller, D. Kapolnek, P. Kozodoy, S.P. Denbaars, and U.K. Mishra, Appl. Phys. Lett. 69, 1438 (1996)
5.J. I. PanKove, and T. D. Moustakas, editors, Gallium Nitride (GaN) I ,pp 11, ACADEMIC PRESS (1998)
6.Z.A. Munir, and A.W. Searcy, J. Chem. Phys. 42, 4233 (1965)
7.N. Newman, J. Ross, and M. Rubin, Appl. Phys. Lett. 62, 1242 (1993)
8.S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 62, 2390 (1993)
9.H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L21 (1989)
10.H. K. Cho, J. Y. Lee, G. M. Yang, and C.S. Kim, Appl. Phys. Lett. 79, 215 (2001)
11.F.A. Ponce, J. S. Major, W. E. Plano, and D. F. Welch, Appl. Phys. Lett. 65, 2302 (1994)
12.X. H. Wu, L. M. Brown, D. Kapolnek, S. Keller, B. Keller, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 80, 3228 (1996)
13.V. Potin, P. Ruterana, and G. Nouet, J. Appl. Phys. 82, 2176 (1997)
14.I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N Sawaki, J. Cryst. Growth 98, 209 (1989)
15.X. H. Wu, P. Fini, E.J. Tarsa, B. Heying, S. Keller, U. K. Mishra, S. P. Deenbar, J. S. Speck, J. Cryst. Growth, 189, 231 (1998)
16.H. K. Kwon, C. J. Eiting, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, Z. Liliental-Weber, and M. Benamara, Appl. Phys. Lett. 77, 2503 (2000)
17.C. J. Sun, M. Z. Anwar, Q. Chen, J. W. Yang, M. A. Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber , C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, Appl. Phys. Lett. 70, 2978 (1997)
18.K. Uchida, M. Kawata, T. Yang, S. Toto, T. Mishima, A. Niwa, and J. Gotoh, J. Elect. Mat. 28,246 (1999)
19.Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997)
20.M. D. McCluskey, L. T. Romano, B. S. Krusor, and D. P. Bour, Appl. Phys. Lett. 72, 1730 (1998)
21.S. Chichibu, T. Azuhata, T. Sato, and S.Nakamura, Jpn. J. Appl. Phys. 70, 2822 (1997)
22.C. C. Chuo, C. -M. Lee, T. -E. Nee.and J. I. Chyi, Appl. Phys. Lett. 76, 3902 (2000)
23.C. A. Tran, R. F. Karlicek, Jr., M. Schurman, A. Qsinsky, V. Merai, Y. Li, I. Eliashevich, M. G. Brown, J. Nering, I. Ferguson, and R. Stall, J. Cryst. Grwoth 195, 397 (1998)
24.Yen-Sheng Lin, Kung-Jeng Ma, C. Hsu, Shih-Wei Feng, Yung-Chen Cheng, Chi-Chih Liao, C. C. Yang, Chang-Cheng Chou, Chia-Ming Lee, and Jen-lnn Chyi, Appl. Phys. Lett. 77, 2988 (2000)
25.Nikhi Sharma, Paul Thomas, David Tricker, and Colin Humphreys, Appl. Phys. Lett. 77, 1274 (2000)
26.S. Mahanty, N. Hao, T. Sugahara, R. S. Q. Fareed, Y. Morishima, Y. Naoi, T. Wang, and S. Sakai, Materal Lett. 41, 67 (1999)
27.I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, Appl. Phys. Lett. 73, 1634 (1998)
28.Z. Liliental-Weber, Y. Chen, S. Ruvimov, and J. Washburn, Phys. Rev. Lett. 79, 2835 (1997)
29.Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, Appl. Phys. Lett. 72, 710 (1998)
30.X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 72, 692 (1998)
31.J. Off, F. Scholz, E. Fehrenbacher, O. Gfrorer, A. Hangleiter, G. Brockt, and H. Lakner, Phys. Stat. Sol. (b) 216, 529 (1999)
32.Huimei Fang, J. Y. Tsai, Y. K. Wang, C. F. Chu, and S. C. Wang, Proceedings of SPIE 79, 3998 (1999).
33.T. S. Zheleva, O. H. Nam, W. M. Ashmawi, J. D. Griffin, and R. F. Davis, J. Cryst. Growth 222, 706 (2001)
34.D. Kapolnek, R. D. Underwood, B. P. Keller, S. Keller, and S. P. Denbaars, and U. K. Mishra, J. Cryst. Growth 170, 340 (1997)
35.D. Kapolnek, S. Keller, R. D. Underwood, S. P. DenBaars, and U. K. Mishra, J. Cryst. Growth 189/190, 83 (1998)
36.B. Beaumont, P. Gibart, M. Vaille, S. Haffouz, G. Nataf, and A. Bouille, J. Cryst. Growth 189/190, 97 (1998)
37.J. Wang, M. Nozaki, Y. Ishikawa, M. S. Hao, Y. Morishima, T. Wang, Y. Naoi, and S. Sakai, J. Cryst. Growth 197, 48 (1999)
38.Q. S. Zhu, H. Matsushima, K. Hiramatsu, and N. Sawaki, Applied Surface Science 167, 149 (2000)
39.S. Tanaka, Y. Kawaguchi, N. Sawaki, M. Hibino, K. Hiramatsu, Appl. Phys. Lett 76, 2701 (2000)
40.H. Matsushima, M. Yamaguchi, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth 189/190, 78 (1998)
41.K. Hiramatsu, H. Matsushima, T. Shibata, Y. Kawagachi, and N. Sawaki, [Conference Paper] Materials Science & Engineering B 59, 104 (1999)
42.Y. Kawaguchi, S. Nambu, H. Sone, T. Shibata, H. Matsushima, M. Yamaguchi, H. Miyake, K. Hiramatsu, and N. Sawaki, Jpn. J. Appl. Phys. 37, L845 (1998)
43.C. Sasaoka, H. Sunakawa, A. Kimura, M. Nido, A. Usui, and A. Sakai, J. Cryst. Growth 180/190, 61 (1998)
44.H. Marchand, J. P. Ibbetson, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, J. Cryst. Growth 195, 328 (1998)
45.T. Akasaka, Y. Kobayashi, S. Ando, N. Kobayashi, and M. Kumagai, J. Cryst. Growth 189/190, 72 (1998)
46.S. Kitamura, K. Hiramatsu, and N. Sawaki, Jpn. J. Appl. Phys. 34, L1184 (1995)
47.O. H. Nam, M. D. Bermser, B. L. Ward, R. J. Nemanich, and R. F. Davis, Jpn. J. Appl. Phys. 36, L532 (1997)
48.A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, Jpn. J. Appl. Phys. 36, L899 (1997)
49.J. Park, P. A. Grudowski, C. J. Eiting, and R. D. Dupuis, Appl. Phys. Lett. 73, 333 (1998)
50.X. Zhang, P. D. Dapkus, and D. H. Rich, Appl. Phys. Lett. 77, 1496 (2000)
51.R. S. Qhalid Fareed, J. W. Yang, Jianping Zhang, Vinod Adivarahan, Appl. Phys. Lett. 77, 2343 (2000)
52.H. Miyake, A. Motogaita, and K. Hiramatsu, Jpn. J. Phys. 38, L1000 (1999)
53.Londolt-Bornstein, Numerical Data and Functional Relationship in Science and Technology III/17a and 17d, Springer-Verlag, Berlin (1982)
54.W.S. Wong, T. Sand, and N.W. Cheung, Appl. Phys. Lett. 72, 599 (1998)
55.W.S. Wong, J. Krüger, Y. Cho, B.P. Linder, E.R. Weber, N.W. Cheung, and T. Sands, Proceedings of the Symposium on LED for Optoelectronic Applications and the 28th State of the Art Programs on Compound Semiconductors 98-2, 377 (1998)
56.T. Lei, M. Fanciulli, R.J. Molnar, T.D. Moustakas, R.J. Graham, and J. Scanlon, Appl. Phys. Lett. 58, 944 (1991)
57.T.D. Moustakas, T. Lei, and R.J. Molnar, Physica B 185, 36 (1993)
58.S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. G. Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. Chu, Appl. Phys. Lett. 75, 2073 (1999)
59.Chuong A. Tran, A. Osinski, R.F. Karlicek, Jr., I Berishev, Appl. Phys. Lett. 75, 1494 (1999)
60.H. Grimmeiss, Z. H. Koelmans, Naturf. 14a, 264
61.H. P. Maruska, J. J. Teitjen, Appl. Phys. Lett. 15, 367 (1969)
62.I. Akasaki, T. Kozowa, K. Hiramatsu, N. Sawak, K. Ikeda, and Y. Ishii, J. Luimn. 40-41, 121 (1988)
63.S. Guha, J.M. DePuydt, J. Qiu, G.E. Hofler, M.A. Haase, B.J. Wu, and H. Cheng, Appl. Phys. Lett. 63, 3023 (1993)
64.J. I. PanKove, and T. D. Moustakas, editors, Gallium Nitride (GaN) I ,pp 56, ACADEMIC PRESS (1998)
65.O. Knacke, O. Kubaschewski, and K. Hesselmann, editors, Thermochemical Poperties of Inorganic Substances, Springer Verlag, Berlin (1991)
66.P. Perlin, T. Suski, H. Teissyre, M. Leszczynski, I. Grzegory, J. Jun, S. Porowski, P. Boguslawski, J. Bernholc, J.C. Cherwin, A Polian, and T.D. Moustakas, Phys. Rev. Lett. 75, 296 (1995)
67.N. Newman, J. Ross, and M. Rubin, Appl. Phys. Lett. 62, 1242 (1993)
68.J. Karpinski, S. Porowski, and J. Jun, J. Cryst. Growth 66, (1984)
69.S. Prowski, M. Bockowski, B. Lucznik, I. Grzegory, M. Wróblewski, H. Teisseyre, M. Leszczynski, E. Litwin-Staszewska, T. Suski, P. Trautman, K. Pakula, and J. Barabowski, Acta Phys. Pol. A 92, 958 (1997)
70.S. Porowsku, J. Cryst. Growth 189/190, 153 (1998)
71.C. R. Miskys, M. K. Kelly, O. Ambacher, and M. Stutzmann, [Conference Paper] Physica Status Solidi A 176, 443 (1999)
72.H. M. Kim, J. E. Oh, and T. W. Kang, Mat. Lett 47, 276 (2001)
73.M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Gorgens, O. Ambacher, and M. Stutzmann, Jpn J. Appl. Phys. 38, L217(1999)
74.K. Yamashima et al, J. Electron Mater. 28, 287 (1999)
75.M. Iwaya, R. Nakamura, S. Terao, T. Ukai, S. Kamiyama, H. Amano, I. Akasaki, [Conference Paper] Proceedings of International Workshop on Nitride Semiconductors. Inst. Pure & Appl. Phys., 833( 2000)
76.K. Linthicum,T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal,T. Smith, D. Batchelor, and R. Davis, Appl Phys. Lett. 75, 196 (1999)
77.L. Sugiura, Appl. Phys. Lett. 70, 1317 (1997)
78.L. Sugiura, J. Appl. Phys. 81, 1633 (1997)
79.H. M. Ng et al. Appl. Phys. Lett. 73, 821 (1998)
80.N. G. Weirnenn et al, J. Appl. Phys. 83, 3658 (1998)
81.S. Sasaoka et al, J. Cryst. Growth 189/190, 61 (1998)
82.W.A. Harrison, Electronic Structure and Properties of Solids, Freeman, San Francisco (1980)
83.J.A. Van Vechtan, Phys. Rev. B 7, 9 (1973)
84.W. Class, Contract Rep., NASA-Cr-1171 (1968)
85.J. Karpisnki, J. Jun, and S. Porowski, J. Cryst. Growth 66, 1 (1984)
86.J. Karpisnki and S. Porowski, J. Cryst. Growth 66, 11 (1984)
87.I. Grzegory, S. Krukowski, J. Jun, M. Bockowski, M. Wroblewski, and S. Porowski, Proc. Of XX AIRAPT Conf., Colorado Springs (1993)
88.R. Groh, G. Gerey, L. Bartha, and J.I. Pankove, Phys. Stat. Sol. A 26, 353 (1974)
89.Z.A. Munir, and A.W. Searcy, J. Chem. Phys. 42, 4233 (1965)
90.C.J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, J. Appl. Phys. 76, 236 (1994)
91.M.E. Lin, B.N. Sverdlov, and H Morkoç, Appl. Phys. Lett. 63, 3625 (1993)
92.K. Balasurbramanian, Chem. Phys. Lett. 164, 231 (1989)
93.J. I. PanKove, and T. D. Moustakas, editors, Gallium Nitride (GaN) I ,pp 88, ACADEMIC PRESS (1998)
94.Hadis Morkoc, Nitride Semiconductors and Devices, pp39, Springer, Berlin (1999)
95.F. A. Ponce, D. P. Bour, W. T. Young, M. Saunders, J. W. Steeds, Appl. Phys. Lett. 67, 337 (1996)
96.A. R. Smith, R. M. Feenstra, D. W. Greve, M. S. Shin, M. Skowronski, J. Neugebauer, and J. Northrup, Appl. Phys. Lett. 72, 2114 (1998)
97.A. R. Smith, R. M. Feenstra, D. W. Greve, J. Neugebauer, and J. Northrup, Phys. Rev. Lett. 79, 3934 (1997)
98.A. R. Smith, R. M. Feenstra, D. W. Greve, M. S. Shin, M. Skowronski, J. Neugebauer, and J. Northrup, J. Vac. Sci. Technol. B 16, 2242 (1998)
99.A. R. Smith, R. M. Feenstra, D. W. Greve, M. S. Shin, M. Skowronski, J. Neugebauer, and J. Northrup, J. Vac. Surf. Sci. 432, 70 (1999)
100.M.Surniya, K. Yoshimura, T. Ito, K. Ohtsuka, S. Fuke, K. Mizuno, M. Yoshimoto, H. Koinuma, A. Ohtomo, M. Kawasaki, J. Appl. Phys. 88, 1158 (2000)
101.S. Fuke , H. Teshigawara , K. Kuwahara , Y. Takano, T. Ito, M. Yanagihara, K. Ohtsuka, J. Appl. Phys. 83, 764 (1998)
102.D. Huang, P. Visconti, K. M. Jones, M. A. Reshchikov, F. Yun, A. A. Baski, T. King, H. Morkoc, Appl. Phys. Lett.78, 4145 (2001)
103.Z. Liliental-Weber, Y. Chen, S. Ruvimov, and J. Washburn, Proc. Mat. Res. Soc. Boston, 449, 417 (1997)
104.S. F. Chichibu, A. Setoguchi, A. Uedonom, K. Yoshimura, M. Sumiya, Appl. Phys. Lett. 78, 28 (2001)
105.M. Sumiya, K. Yoshimura, K. Ohtsuka, S. Fuke, Appl. Phys. Lett. 76, 2098 (2000)
106.V. S. Ban, J. Electrochem. Soc. 119, 761 (1972)
107.R. L. Aggarwal, P. A. Maki, R. J. Molnar, Z. L. Liau, and I. Melngailis, J. Appl. Phys. 79, 2148 (1996)
108.P. J. Born, and D. S. Robertson, J. Mater. Sci 15, 3003 (1980)
109.J. I. PanKove, and T. D. Moustakas, editors, Gallium Nitride (GaN) II ,pp 5, ACADEMIC PRESS (1999)
110.R. J. Molnar, W. Gotz, L. T. Romano, and N. M. Johnson, J. Cryst. Growth 178, 147 (1997)
111.Y. V. Melnik, I. P. Nikitina, A. S. Zubrilov, A. A. Sitnikova, Y. G. Musikhin, and V. A. Dmitrive, Inst. Phys. Conf. Ser. 142, 863 (1996)
112.J. E. Northrup, and J. Neugebauer, Phys. Rev. B60, R8473 (1999)
113.Y. Kato, S. Kitamura, K. Hiramatsu, N. Sawaki, J. Cryst. Growth 144, 133 (1994)
114.S. Nakamura, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chochu, J. Cryst. Growth 189/190, 820 (1998)
115.P. Vennegues, B. Beaumont, V. Bousquet, M. Vaille, and P. Gibart, J. Appl. Phys. 87, 4175 (2000)
116.B. Beaumont, S. Haffouz, and P. Gibert, Appl. Phys. Lett. 72, 921 (1998)
117.J. Wang, M. Nozaki, Y. Ishikawa, M.S. Hao, Y. Morishima, T. Wang, Y. Naoi, S. Sakai, J. Cryst. Growth 197, 48 (1999)
118.Y. Honda, Y. Kawaguchi, Y. Ohtake, S. Tanaka, M. Yamaguchi, N. Sawaki, J. Cryst. Growth 230, 346 (2001)
119.J. P. Hirth and J. Lothe, Theory of Dislocation, 2nd, Wiley New York (1982)
120.S. K. Hong, T. Yao, B. J. Kim, S. Y. Yoon, and T. I. Kim, Appl. Phys. Lett. 77, 82 (2000)
121.A. R. Smith, R. M. Feenstra, D. W. Greve, J. Neugebauer, J. E. Northup, Phys. Rev. Lett. 79, 3934 (1997)
122.A. R. Smith, V. Ramachandran, R. M. Feenstra, D. W. Greve, A. Ptak, T. H. Myers, W. L. Sarney, L. Salamanca-Riba, M. S. Shin and M. Skowronski, MRS Internet J. Nitride Semicond. Res. 3, 12 (1998)
123.A. R. Smith, R. M. Feenstra, D. W. Greve, M. S. Shin, M. Skowronski, J. Neugebauer, and J. Northrup, J. Vac. Sci. Technol. B 16, 2242 (1998)
124.A. R. Smith, R. M. Feenstra, D. W. Greve, M. S. Shin, M. Skowronski, J. Neugebauer, and J. Northrup, Surf. Sci. 423, 70 (1999)
125.R. Held, D. E. Crawford, A. M. Johnson, A. M. Dabiran, and P. I. Cohen, J. Electron Mater. 26, 272 (1997)
126.J. I. PanKove, and T. D. Moustakas, editors, Gallium Nitride (GaN) II ,pp 133, ACADEMIC PRESS (1999)
127.T. Zywietz, J. Neugebauerm and M. Scheffler, Appl. Phys. Lett. 73, 487 (1998)
128.D. Hull and D. J. Bacon, Introduction to Dislocation, pp 224, Pergamon Oxford England (1984)
129.T. Detchprohm, H. Amano, K. Hiramatsu, and I. Akasaki, J. Cryst. Growth 128, 384 (1993)
130.J. Haisma, G.A.C.M Spierings, U.K.B. Biermann, and J.A. Pals, Jpn. J. Appl. Phys. 28, 1426 (1989)
131.M.K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, Phys. Stat. Sol. (A) 159, R3 (1997)
132.Andreas and Gertrud Kräuter, Materials Science and Engineering R25, 1-88 (1999)
133.Hiroshi Wada, Hironori Sasaki, and Takeshi Kamijoh, Solid-State Electronics 43, 1655 (1999)
134.U. Gösele, and Q. Y. Tong, Indium Phosphide and Related Materials 2000. [Conference Proceedings], 9 (2000)
135.W. S. Wong, Y. Cho, E. R. Weber, and T. Sands, Applied Physics Letters 75, 1887 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔