跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 07:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡陳永
研究生(外文):Chen-Yong Tsai
論文名稱:Al(l)/NiO(s)/Ni(s)液固介面反應機制之研究
論文名稱(外文):A Study on Mechanism of Al(l)/NiO(s)/Ni(s) Interface Reaction
指導教授:朝春光
指導教授(外文):Chuen-Guang Chao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:金屬間化合物鎳鋁介面擴散
外文關鍵詞:intermetallic compoundNiAlinterfacediffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以擠壓鑄造法製作Ni(s)-NiO(s)-Al(l)介面,在低氧分壓的狀態下,進行不同溫度之熱處理,鑑定不同溫度之熱處理後的生成相,並以熱力學計算探討實驗結果,藉以研究NimAln/Al2O3(α)金屬基複合材料。
根據熱力學計算Al形成Al2O3的氧分壓1.05×10-56atm,Ni形成NiO的平衡氧分壓7.08×10-20 atm,於本實驗的固態反應中觀察到介面上3NiO(s)+2Al(s)→3Ni(s)+Al2O3(s)的反應,與計算結果相符合。
溫度高於純鋁熔點的熱處理,3NiO(s)+2Al(l)→3Ni(s)+Al2O3(s),所形成之Al2O3為顆粒狀非連續之α-Al2O3,產生之後並不會影響後續的反應。
Ni Al2O4在Ni-Al-O三元系統是常見的穩定相,但是在固固態反應與液固態熱處理的反應前後皆無觀察到Ni Al2O4,此為Ni Al2O4 受到NiO的活性與氧分壓影響,本實驗反應在氬氣氣氛中,因此Ni Al2O4不產生。
熱處理溫度為NimAln形成的主要因素,600˚C固態反應無觀察到NimAln產生,670˚C熱處理反應初期 NiO(s)+Al(l)→Ni Al3(s)+Al2O3(α),待NiO消耗完全,Ni和Al直接反應,Ni和Al介面上則有NiAl3+Ni2Al3兩層。於1000˚C在鋁基材開始析出Ni2Al3,在Ni和Ni2Al3之間形成Ni3Al 。達1200˚C時,在鋁基材開始析出NiAl,在介面形成 NiAl。

In this study, Al(l)/NiO(s)/ Ni(s) interface was produced by squeeze casting. Under low oxygen pressure, heat treatments which were employed at different temperatures induced various intermetallic compound. The experimental results were studies by thermodynamic calculation to investigate the reacting mechanism of Al/NiO/Ni interface. According to thermodynamics, Al forms Al2O3 under the oxygen partial pressure of 1.05×10-56 atm, and, Ni forms NiO at 7.08×10-20 atm. The NiO would decomposed at very low oxygen pressure. In this research oxygen pressure was very low, therefore 3NiO(S)+2Al(s)→3Ni(S)+ Al2O3 (s) was observed in solid state. The result is identical with the thermodynamic consequence. When the temperature is higher than the melting point of the pure Al, the reaction of 3NiO(S)+2Al(s)→3Ni(S)+ Al2O3 (s) formed α-Al2O3 particles which didn’t block the liquid Al to pass through the reaction zone.
NiAl2O4 is the common stable phase in Ni-Al-O system. However in this study, Ar atmosphere is applied owning heat treatments, NiAl2O4 which is affected by the activity of NiO and O2 pressure cannot be formed during this study.
Temperature is the main factor of obtaining NimAln, At 600℃, NimAln can not be observed .During the initial period, the reaction followed .After NiO is depleted, Ni reacted with Al, forming NiAl3 and Ni2Al3.At 1000℃, Ni2Al3 is eutectic from the Al substrate, and NiAl is eutectic to produce NiAl as the temperature up to 1200℃.

第一章前言………………………………………………………………1
第二章 文獻回顧……………………………………………………….3
2-1 NiAl介金屬化合物…………………………………………………3
2-2 NiAl-Al2O3複合材料……………………………………………….4
2-3 Ni-Al系介金屬化合物的反應機構………………………………...6
2-4 Ni -Al2O3系統的擴散反應………………………………………….7
2-5 NiO-Al系統的反應機制……………………………………………8
2-6擠壓鑄造法………………………………………………………….9
2-7介面反應動力學……………………………………………………10
2-8 Ni-Al-O間各平衡相關係…………………………………………..13
第三章 實驗步驟………………………………………………………14
3-1 材料………………………………………………………………...15
3-2純鎳的加工…………………………………………………………15
3-3鎳的熱氧化…………………………………………………………16
3-4 預形體的製備……………………………………………………...16
3-5 擠壓鑄造…………………………………………………………...16
3-6 熱處理……………………………………………………………...18
3-7測試與分析………………………………………………………....18
3-7-1微觀組織分析的試片製備……………………………………….18
3-7-2光學顯微鏡組織觀察………………………………………….…18
3-7-3掃描式電子顯微鏡…………………………………………….…18
3-7-4電子微探儀..……………………………………………………...19
3-7-5掃描穿透式電子顯微鏡(STEM)…………………………………20
3-7-6 X-ray繞射分析…………………………………………………...20
第四章 結果與討論……………………………………………………21
4-1未熱處理……………………………………………………………21
4-2 600˚C固態熱處理…………………………………………………22
4-3 670℃與700℃熱處理條件………………………………………...23
4-4 1000℃的熱處理條件………………………………………………27
4-5 1200℃與1300℃熱處理…………………………………………...28
4-6 Al/NiO/Ni介面的熱力學平衡……………………………………..30
4-7 Al/NiO/Ni的介面反應動力學……………………………………..31
第五章 結論……………………………………………………………36

[1]D.B.Miracle‚Acta.Metall.Mater.‚41(3),649-684, (1993).
[2]R.D.Noebe‚R.R.Bowman and M.V.Nathal‚Inter.Mater.Rev.‚38(4)‚193­232‚(1993).
[3]A.Daoud‚M.Abo-Elkhar‚Journal of Materials Processing Technology‚120‚296-302‚(2002).
[4]J.A.Hark‚D.E.Alman‚Wear‚225-229,544-556‚(1999).
[5]Hahn Choo‚Mark Bourke‚Philips Nash‚Mark Daymond‚Ning Shi‚Mater.Sci.Eng.A‚264‚108-121‚(1999).
[6]W.C.Chiou‚C.T.Hu‚Metall.Trans.A‚25‚985-992,(1994).
[7]D.C.Dunand‚J.Mater.Sci.‚29‚4056-4060‚(1994).
[8]J.P.Lebrat and Arrind Varma‚Combust.‚Sci.and Tech.‚88‚211-222, (1992).
[9]D.E.Alman‚C.P.Dogan‚J.A.Hark andJ.C.Rawers‚Mater.Sci.Eng.A‚192-193‚624-632 ,(1995).
[10]J.H.Schneibel‚E.P.George‚C.G.Mckamey‚E.K.Ohriner‚M.L.Santella and C.A.Carmichael‚J.Mater.Res. ‚6(8)‚1673-1679,(1991).
[11]R.M.German and A.Bose‚Mater.Sci.Eng. A , 107,107-166,(1993).
[12]D.E.Alman and Noman S.Stoloff‚Inter.J.Powder Metall.‚27(1) ,29-41,( 1993).
[13]H.Choo‚P.Nash and M.Dollar‚Mat.Sci.Eng.A 239-240 , 464-471, (1997).
[14]P.Nash,M.F.Singleton,J.L.Murray, Alloy Phase Diagram‚ v3‚2‧49
[15]A.S.Murthy,E.Goo,Acta metall.mater,Vol.41,No.7,2135-2142, (1993).
[16]Thomas Chraska , Jiri Lasek , Pavel Chraska,Materials Science and Engineering ,A224 ,263-272 , (1998).
[17]J.Ceramak‚I.Stloukal‚J.Ruzickova and A.Pokorna‚Intermetallics‚6 , 21-28, (1998).
[18]Jinliu Wang‚Yip-Wah Chung‚Intermetallics‚9,349-354, (2001).
[19]汪建民主編, 陶瓷技術手冊, 初版, 經濟部技術處, (1994)
[20]M.Haerig, S.Hofmann,Applied Surface Science,125,99-114,(1998).
[21]K.S.Kumar‚S.K.Mannan and R.K.Viswanadham‚Acta.Metall.Mater. ‚40(6),1202-1222,(1992).
[22]S.T.Chang‚W.H.Tung‚H.C.You‚I.C.Lin‚Mater.Chem.Phy.‚56 ,157-162,(1998).
[23]H.X.Zhu and R.Abbaschian‚Mat.Sci.Eng.A‚282A , 1-7, (2000).
[24]H.Doty and R. Abbaschian‚Mat.Sci.Eng.A‚195,101-111,(1995).
[25]D.Padmarvardhani‚A.Gomez and R. Abbaschian‚Intermetallics‚5,229-241,(1998).
[26]DF.Susan‚W.Z.Misiolek and A.R.Mirder‚Metal.Mat.Trans.A‚32A,379-390,(2001).
[27]巫朝弘,陳信文,張家華,吳貞欽,鑄工,第27卷,第一期(第108期),12-16,(2001).
[28]M.Lieblich‚J.L.Gonz`alez-Carrasco and G.Caruana‚Intermetallics ‚5, 515-524, (1997).
[29]J.P.Neumann‚T.Zhong‚and Y.A.Chang‚Alloy Phase Diagram‚v3‚2‧312
[30]John G..Geodjen‚David A.Shores‚James H.Stout‚Mater.Scie.Eng.A222‚58-69‚(1997).
[31]T. Fujimura, S. I. Tanaka,Acta mater. , vol.45.No.12,4917-4921,(1997).
[32]Trumble,K.P. and Ruhle,M. ,Acta metall.mater. , 39,1915,(1991).
[33]Paladino,A.E. and Kingery,W.D. ,J.Chem.Phys. , 37, 957, (1962).
[34]W.Hu‚W.Wunderlich‚D.Ponge andG..Gottstein‚Canadian Metallurgical Quarterly‚v.34.No.3‚231-326‚(1995).
[35]W.G..Fahrenholtz‚K.G.Ewsuk‚R.E.Loehman and A.P.Tomsia‚Metal.Mat.Trans.A‚27A‚2100-2104‚(1996).
[36]施勝文‚”A Study on the Formation Characteristic of TiAl3 Intermetallic Matrix Composites and their Elevated Temperature Properties”交通大學‚碩士論文‚民國88年
[37]黃于恬‚臺灣大學,” 電子構裝In49Sn無鉛銲錫與銀厚膜及銀基板之界面反應研究”臺灣大學,碩士論文‚民國88年
[38]劉益銘‚”Interfacial Reactions between In-Based Lead-Free Soldersand Au Thick Films or Ag Substrates”臺灣大學,碩士論文‚民國88年
[39] 陳建仲,蔡欣瑩,朝春光,材料年會,(2001)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top