跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:駱安亞
研究生(外文):An-Ya Lo
論文名稱:包覆磁性合金之碳奈米結構及其性質
論文名稱(外文):The magnetic alloy-encapsulated carbon nanostructures and their properties
指導教授:郭正次
指導教授(外文):ChengTzu Kuo
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:129
中文關鍵詞:碳奈米管磁記憶媒體電子迴旋共振化學氣相沉積法
外文關鍵詞:carbon nanotubemagnetic recording mediaECR-CVD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了增加奈米結構材料之應用範圍,例如製作磁記憶媒體,本研究以觸媒輔助電子迴旋共振化學氣相沉積法(ECR-CVD)利用CH4及H2為反應氣源,於矽基材上成功的合成鑲埋有磁性顆粒的碳奈米材料。而磁性之觸媒包括FePt, CoPt, Nd2Fe14B 和 Fe薄膜以及FeNi厚膜。主要之製程參數包括氣源中之氫氣含量、氫電漿前處理、基材偏壓、沉積溫度以及電漿導流板之施加。合成含磁性顆粒之奈米結構利用掃描式電子顯微技術 (SEM) 、穿透式電子顯微技術(TEM)、高倍率電子顯微技術(HRTEM)、拉曼光譜技術 (Raman spectroscpy) 、振動試樣磁量儀 (VSM) 以及磁力顯微技術 (MFM)來分析其形貌、微結構、鍵結以及磁性質。並利用超音波丙酮浴之震盪來比較其附著特性。
有關觸媒的影響方面,實驗結果顯示在相同之沉積條件下,不同之觸媒將影響管數密度、管長、碳膜之形成、觸媒和碳管之附著力以及碳管之種類。造成這些結構和性質不同之原因,推測是因為碳在不同觸媒中之溶解率以及氫電漿對碳管以及碳膜之蝕刻率的不同所造成的。依據目前之結果,最密之碳管管數密度高達134 Gtubes/inch2 (以Fe觸媒輔助成長之碳管) ,最長之碳管(或說是成長速率最快之碳管)則為2100 nm (Nd2Fe14B觸媒輔助成長15分鐘)。而對於某些領域之運用,將碳管頂端之觸媒顆粒去除是重要的,而本實驗亦成功的利用特定觸媒輔助成長之碳管,配合超音波之丙酮浴輕易的將觸媒顆粒去除。
關於電漿導流板之效應,藉由通在基材上放置具有負偏壓之導流板可以控制電漿之流向,使原本與基材夾90∘角成長之碳奈米管可藉此令其與基材夾45∘角成長。同樣的,亦可藉由電漿導流板之施加使得原本無續排列之海草狀碳片得以平行排列。
至於其它的製程參數之效應,依實驗結果指出,氫氣流量及基材偏壓是影響不同奈米結構(例如:碳管和碳膜)之蝕刻速度差異的主要因素。然而,偏壓造成之蝕刻較具方向性,而氫氣流量卻是無方向性的。在低氫氣流量之情形下將造成海草狀碳奈米結構或包覆於碳管外之碳奈米結構,而在較低之負偏壓之下則會造成碳膜厚度之增長。另外,結果也顯示氫電漿前處理之作用基本上是攻擊觸媒薄膜之表面,使產生均勻分散之奈米觸媒顆粒以作為成長碳管之觸媒。
對於磁性之影響,根據實驗結果,包在碳管中之磁性觸媒顆粒略大於最佳臨界尺寸或單磁域晶粒之尺寸(35 nm, 或10~100 nm之直徑) ,而在顆粒尺寸等於單磁域晶粒尺寸時將有利於獲得較高之矯頑磁力。在較高之沉積溫度下,碳奈米管會由於觸媒晶粒尺寸之變小而提高其矯頑力。目前經由鐵觸媒輔助成長之碳奈米管所獲得之最高矯頑磁力是750 Oe,這樣的結果可媲美於目前文獻中的相關研究。由於具有高長寬比觸媒形狀以及磁性退火步驟提供了形狀異向性以及誘發異向性的優點,因此在本製程下垂直與水平於基材方向之矯頑磁力之差值可以高達300 Oe。使用磁力顯微技術可取得這些獨立且均勻分散之磁性顆粒的影像,此結果也展示了在磁記憶媒體方面之應用潛力。
To enlarge the application areas of the nano-structured materials, such as applications in magnetic recording media, the well-aligned carbon nano-structures encapsulating with magnetic catalyst particles were successfully synthesized on Si wafer by ECR-CVD method with CH4 and H2 as gas sources. The magnetic catalysts, including FePt, CoPt, Nd2Fe14B and Fe thin films, and FeNi thick film, were studied. The main process parameters include hydrogen content in the gas sources, hydrogen plasma catalyst pretreatment, substrate bias, deposition temperature and plasma flow guiding. The magnetic properties, morphologies, microstructures and bonding structures of the magnetic catalyst-assisted carbon nanostructures were characterized by VSM, MFM, AFM, SEM, TEM, HRTEM and Raman spectroscopy. The adhesion properties of nanostructures with the substrates were qualitatively compared by ultrasonic agitation in acetone bath.
Regarding effects of catalyst materials, the results show that at the same deposition conditions, different catalysts can produce carbon nanotubes (CNTs) with different tube number density, tube length, carbon film formation, bonding between catalyst and CNTs, growth mechanism and type of CNTs. These differences in structures or properties may relate to the solubility difference of carbon in catalysts, etching rate difference between CNTs and carbon films by hydrogen plasma. In the present conditions, the maximum tube number density can go up to 134 Gtubes/inch2 for Fe-assisted CNTs. For Nd2Fe14B—assisted CNTs, the longest tube length can reach 2100 nm for 15 min deposition time, which is roughly corresponding to the highest growth rate. For certain applications, if the removal of catalysts from tips of CNTs is required, it can easily be achieved by selecting proper catalyst and combining with ultrasonic agitation in acetone bath.
About effect of plasma flow guiding, the 90°-inclined CNTs was successfully modified to 45°-inclined CNTs by positioning a negatively-biased metal plate above the Si substrate surface to vary the plasma flow pattern. The results also show that the plasma flow guiding may be used to modify the seaweed-like nano-sheets from random orientations to parallel alignment.
For effects of other process parameters, the results indicate that the hydrogen flow rate and substrate bias are essentially the factors governing the differential etching effect to different nanostructures, e.g. carbon film and CNTs. However, the etching effect is more directional for bias, and more isotropic for hydrogen plasma. A lower hydrogen flow rate favors formation of the seaweed-like carbon nanostructures, or CNTs surrounding with other carbon nanostructures. A lower negative bias voltage favors formation of the additional thicker carbon films. The results also show that the hydrogen plasma pretreatment of the catalyst-coated substrates is basically to attack the catalyst film to become the well-distributed nano-particles to act as catalysts of CNTs.
Regard to the magnetic properties of the magnetic metal-encapsulated carbon nanostructures, the grain sizes of the magnetic particles (35 nm, or 10 ~ 100 nm in diameter) are greater than but close to the critical optimum size or single domain size, which favor a higher coercive force. A higher deposition temperature of CNTs results in a greater coercive force due to a smaller catalyst size, and the greatest coercive force can go up to 750 Oe for Fe-assisted CNTs at 715℃ deposition temperature, which is comparable with the reported values in the literature. The process also takes advantages of higher shape and induced anisotropy due to its higher aspect ratio and magnetic annealing effect. The coercive force difference between vertical and horizontal direction can reach 300 Oe in the present conditions. The results also demonstrate the potential applications in magnetic recording media that the isolated and well-distributed magnetic particles in the magnetic metal-encapsulated carbon nanostructures can be imaged by MFM micrographs.
中文摘要………………………………………………………………I
英文摘要……………………………………………………………III
致謝文…………………………………………………………………V
目錄……………………………………………………………………VI
符號說明……………………………………………………………VIII
表目錄…………………………………………………………………X
圖目錄…………………………………………………………………XI
第一章 前言……………………………………………………………1
第二章 文獻回顧與理論基礎…………………………………………3
2.1 奈米材料…………………………………………………………3
2.2 碳奈米結構………………………………………………………7
2.3 碳奈米管之製造方法…………………………………………10
2.3.1 觸媒法…………………………………………………………10
2.3.2 非觸媒法………………………………………………………13
2.4 碳奈米管之應用………………………………………………14
2.5 奈米結構及性質量測方法……………………………………18
2.6 基礎磁學理論…………………………………………………20
2.6.1 磁滯曲線與磁性的分類……………………………………20
2.6.2 磁異向性……………………………………………………23
2.6.3 晶粒尺寸對於矯頑磁力的影響……………………………25
2.7 磁紀錄媒體簡介………………………………………………26
2.8 磁性性質量測方法簡介………………………………………29
2.9 磁性奈米結構之合成及性質…………………………………30
2.10 充填磁性材料碳奈米結構之合成與性質……………………31
第三章 實驗方法……………………………………………………34
3.1 實驗構想及流程………………………………………………34
3.2 磁性薄膜觸媒之製程說明……………………………………34
3.3 反應氣體及製程條件…………………………………………35
3.4 ECR-CVD沉積系統簡介………………………………………36
3.5 奈米結構沉積步驟……………………………………………37
3.6 分析方法………………………………………………………37
第四章 結果與討論…………………………………………………40
4.1 不同觸媒對碳奈米管SEM形貌之影響………………………40
4.2 氫氣含量對碳奈米管SEM形貌之影響………………………40
4.3 導流板對碳奈米管之SEM成長之影響………………………41
4.4 偏壓對碳奈米管形貌之影響…………………………………42
4.5 觸媒氫氣蝕刻對碳奈米管SEM形貌之影響…………………43
4.6 TEM,HRTEM和EELS分析結果…………………………………44
4.6.1 不同觸媒碳奈米管之管壁排列與成長機制………………44
4.6.2 不同觸媒碳奈米管管壁之干涉條紋比較…………………45
4.7 碳奈米管之附著力及觸媒去除………………………………45
4.8 Raman頻譜比較………………………………………………47
4.9 奈米結構之磁特性……………………………………………48
4.9.1磁滯曲線之偏移與氧化現象………………………………48
4.9.2沉積溫度對奈米結構的磁性之影響………………………49
4.9.3 觸媒種類對奈米結構磁性質之影響………………………49
4.9.4 奈米結構磁性異向性之形成機制…………………………50
4.10 AFM & MFM 影像比較………………………………………50
第五章 結論………………………………………………………52
第六章 未來展望…………………………………………………54
參考文獻…………………………………………………………55
表目錄
表2.1 Fe、Co、Ni、Fe3O4及-Fe2O3之臨界尺寸Dc[Leslie-pelecky, et al., 1996]。…………………………………………………………59
表2.2 CRT、LCD、FED之優缺點比較表[http://www.ee.ndhu.edu.tw/test/publications /publicationns3 /pubi.htm] 。………………………………………………………………59
表2.3 奈米碳管與其他材料之機械性質比較表[http://www.ee.ndhu.edu.tw/test/public cations/publications3/pubi.htm] 。………………………………59
表2.4 硬碟讀寫頭、碟片及介面之參數隨記錄密度變化之情形[Menon & Gupta, 1999] 。……………………………………………………60
表2.5 硬碟密度單位換算表。………………………………………60
表2.6 以電弧放電法在陰極上冷卻形成碳包覆不同純金屬的矯頑磁力比較表[Sun, et al. 2000]。…………………………………………61
表3.1 (a)試片編號及成長條件(FePt和CoPt為觸媒) 。…………62
(b)試片編號及成長條件(Nd2Fe14B為觸媒) 。……………………63
(c)試片編號及成長條件(Fe、FeNi為觸媒以及無觸媒) 。………64
表3.2 觸媒薄膜之EDS成分分析結果………………………………65
表4.1 不同觸媒下碳奈米管形貌特性和性質比較表。……………65
表4.2 不同製程條件下碳奈米微結構特性比較表。………………66
表4.3 各種觸媒所成長之碳奈米管在超音波震盪附著力測試前後之 Raman IG/ID頻譜比較表。……………………………………………67
表4.4 各種觸媒所成長之鑲埋金屬奈米碳管之水平及垂直方向矯頑磁力比較表。………………………………………………………………67
圖目錄
圖2.1奈米材料、元件、生物細胞及病毒等相對尺寸大小比較圖[http:// nr.stic.gov.tw/ejournal/scipolicy/Sr9007/SR90071.HTM#SR900710]。……………………………………………………………………………68
圖2.2 奈米SiC顆粒在Al2O3基地中之HRTEM影像。[吳泰伯, 2002]……68
圖2.3 在奈米尺度之下,磁性顆粒之尺寸D與其矯頑磁力Hc之關係[Leslie-pelecky, et al., 1996]。……………………………………69
圖2.4 在小於臨界尺寸時,Hc與顆粒尺寸之關係[Qi Chen, et. al., 1998]。………………………………………………………………………69
圖2.5 在大於臨界尺寸時,Hc與顆粒尺寸之關係[Ming Sun, 1999]。………………………………………………………………………70
圖2.6 碳奈米管的HRTEM微結構影像[Iijima, 1991]。………………………………………………………………………70
圖 2.7 石墨、鑽石、C60及單層碳奈米管結構模型[http://www.ssttpro.com.tw/]。………………………………………71
圖2. 8 石墨層狀結構之chiral vector和chiral angle示意圖 [Dresselhaus,et al., 1995] 。………………………………………71
圖2.9 Armchair, Zigzag和Chiral nanotubes 之結構示意圖 [Dresselhaus, et al., 1995] 。……………………………………………………………………72
圖2.10 竹結狀碳管之TEM影像 [Cheol Jin Lee, 2000] 。…………72
圖2.11 場發射元件製程示意圖[pirio, G. et al., 2002]。………73
圖2.12 CNT 場發射元件解剖圖[pirio, G. et al., 2002]。………73
圖2.13 韓國 Samsung 製造之碳奈米管三元色影像平面顯示器 {http : // www ssttpro.com.tw/}。…………………………………73
圖2.14 中空碳奈米管之TEM形貌 [Maurin, et al., 2001] 。……74
圖2.15 (a)鑽石模 ; (b)非晶質碳; 和(c)石墨及(d)CNTs 之拉曼光譜[ 汪, 1998 ]。…………………………………………………………74
圖2.16 磁滯曲線重要磁特性示意圖。………………………………75
圖2.17 磁性的分類[Cullity, 1972]。…………………………… 75
圖2.18 磁性形狀異向性之Prolate spheroid示意圖[Cullity, 1972] 。…………………………………………………………………76
圖2.19 硬式磁碟及DRAM之面記錄密度變化趨勢圖[Coey, 2001]。……………………………………………………………………76
圖2.20 磁記錄位元(bit)尺寸隨面記錄密度變化情形[Menon & Gupta, 1999]。…………………………………………………………76
圖2.21磁記錄系統之基本原理及數位訊號輸出示意圖[O’Grady & Laidler, 1999]。………………………………………………………77
圖 2.22 位元長度約為200 nm之水平記錄媒體之MFM影像[White, 2000]。…………………………………………………………………77
圖2.23 垂直記錄媒體與水平記錄媒體,(a)原理示意圖,(b)及(c)分別為水平及垂直記錄方式其矯頑磁力(Hc),殘磁 (Mr),與去磁力(Hd),交互作用之關係。………………………………………………………78
圖2.24 圖案化記錄媒體,(a)結構示意圖[Chou, Stephen, Y., 1996],(b)製造實施例[Todorovic, Mladen,et.al, 1999]。…………………………………………………………………79
圖2.25 MFM感測原理示意圖[邱裕煌, 1997]。…………………………………………………………………80
圖2.26 MFM兩段式掃描示意圖[邱裕煌, 1997]。…………………………………………………………………80
圖2.27 MFM影像判讀示意圖[邱裕煌, 1997]。……………………………………………………………………81
圖2.28 數位錄影帶之AFM和MFM影像比較圖[邱裕煌, 1997]。……………………………………………………………………81
圖2.29 VSM量測示意圖[交大光儲存實驗室WWW網頁]。……………………………………………………………………82
圖2.30 Co陣列成長在氧化鋁模板中之TEM截面照片[Sun, et al. 2001]。……………………………………………………………………82
圖2.31矯頑磁力隨著Co陣列之長度變化圖[Sun, et al. 2001]。……………………………………………………………………83
圖2.32 鋁陽極膜中電鍍Ni-nanowire之SEM影像[Cao, et al., 2001]。…………………………………………………………………83
圖2.33矯頑磁力隨θ角變化圖(θ角為量測方向與奈米線垂直線之夾角)(a) θ=0∘和90∘時磁滯曲線比較圖(b)Hc隨θ角變化圖。[Cao, et al., 2001]。…………………………………………………………84
圖2.34密度29 GDots/inch2之量子點磁記憶媒體之MFM影像[Hanginoya, 1999]。…………………………………………………………………85
圖2.35 密度65 Gbit/inch2之圖形化記憶體SEM影像[Chou, 1996]。…………………………………………………………………85
圖2.36密度0.26 Tbit/inch2之圖形化記憶體SEM影像[Chou, 1996]。…………………………………………………………………86
圖2.37 Fe-nanowire 之HRTEM[Grobert,et al.1999] 。……………………………………………………………86
圖2.38 Fe-nanowire之(a)磁滯曲線。(b)Fe-nanowire(a=b<<c)之Hc隨溫度變化圖 [Grobert,et al.1999]。………………………………………………………………87
圖2.39 熱裂解法成長鑲埋鐵顆粒之碳管之SEM影像[Zhang, et al., 1999]。……………………………………………………………………87
圖2.40 圖2.39中之碳管在5K和320K溫度下之磁滯曲線,其矯頑磁力於室溫時約 500 Oe [Zhang, et al., 1999]。……………………………88
圖2.41以電弧放電法成的碳包覆純金屬的奈米粒子之TEM影像 [Sun, et al, 2000]。………………………………………………………………88
圖 3.1實驗流程圖。………………………………………………………89
圖3.2 電漿導流板架設示意圖。…………………………………………90
圖3.3 ECR-CVD構造示意圖。……………………………………………90
圖 4.1 以FePt薄膜為觸媒輔助成長之奈米碳管形貌:(a)側視圖;(b)上視圖(試片編號:A1)。……………………………………………………91
圖 4.2 以CoPt薄膜為觸媒輔助成長之奈米碳管形貌:(a)側視圖;(b)上視圖(試片編號:B1)。……………………………………………………92
圖 4.3 以Nd2Fe14B薄膜為觸媒輔助成長之奈米碳管形貌:(a)側視圖;(b)上視圖(試片編號:C1)。………………………………………………93
圖 4.4 以Fe薄膜為觸媒輔助成長之奈米碳管形貌:(a)側視圖;(b)上視圖(試片編號:D1)。………………………………………………………94
圖 4.5 以FeNi厚膜為觸媒輔助成長之奈米碳管形貌:(a)側視圖;(b)上視圖(試片編號:E1)。……………………………………………………95
圖 4.6 以FePt薄膜為觸媒,不同的甲烷和氫氣比例下所成長之微結構形貌:(a) CH4:H2=15:15 sccm /sccm (試片編號: A1);(b)CH4:H2=15:5 sccm/sccm (試片編號: A2)。……………………………96
圖 4.7 以CoPt薄膜為觸媒,不同的甲烷和氫氣比例下所成長之微結構形貌:(a) CH4:H2=15:15 sccm /sccm (試片編號: B1);(b)CH4:H2=15:5 sccm/sccm (試片編號: B2)。……………………………97
圖 4.8 以Nd2Fe14B薄膜為觸媒,不同的甲烷和氫氣比例下所成長之微結構形貌:(a) CH4:H2=15:15 sccm /sccm (試片編號: C1); (b)CH4:H2=15:5 sccm/sccm (試片編號: C2)。……………………………98
圖 4.9 以Fe薄膜為觸媒,不同的甲烷和氫氣比例下所成長之微結構形貌:(a) CH4:H2=15:15 sccm /sccm (試片編號: A1);(b)CH4:H2=15:5 sccm/sccm (試片編號: A2):(a) CH4:H2 = 15:15 sccm/sccm (試片編號: D1);(b)CH4:H2 = 15:5 sccm/sccm(試片編號: D2)。……………99
圖 4.10 以FePt薄膜為觸媒:(a)45∘基材傾斜角之CNTs形貌(試片編號:A3);(b)90∘基材傾斜角之CNTs形貌(試片編號: A1)。……………100
圖 4.11以CoPt薄膜為觸媒: (a)45∘基材傾斜角之CNTs形貌(試片編號:B3) (b)90∘基材傾斜角之CNTs形貌(試片編號: B1)。……………101
圖 4.12以Nd2Fe14B薄膜為觸媒: (a)45∘基材傾斜角之CNTs形貌(試片編號:C3) ; (b)90∘基材傾斜角之CNTs形貌(試片編號:C1)。………102
圖 4.13以Fe薄膜為觸媒: (a)45∘基材傾斜角之CNTs形貌(試片編號: D3) ; (b)90∘基材傾斜角之CNTs形貌(試片編號: D1)。…………103
圖4.14無觸媒成長之碳奈米葉片形貌:(a)(b)碳奈米葉片彼此平行的成長(試片編號:F3) ; (c)碳奈米葉片無固定方向且垂直於基材成長(試片編號:F1)。………………………………………………………………104
圖 4.15 導流板對電漿流向之影響示意圖。…………………………105
圖 4.16 偏壓由-200 V降至-80 V時以Nd2Fe14B薄膜為觸媒成長之碳奈米管(試片編號:C4)。………………………………………………………106
圖 4.17當偏壓由-200V降至-80V時以Fe薄膜為觸媒成長之碳奈米管(試片編號:D4)。………………………………………………………………107
圖 4.18當偏壓由-200V降至-80V時以CoPt薄膜為觸媒成長之碳奈米管(試片編號:B4)。……………………………………………………………107
圖 4.19以Nd2Fe14B 薄膜為觸媒輔助成長之碳奈米結構,先經氫電漿前處理(試片編號:C1)。………………………………………………………108
圖 4.20以Nd2Fe14B 薄膜為觸媒輔助成長之碳奈米結構,省略氫電漿前處理(試片編號:C6)。………………………………………………………108
圖 4.21 以Fe薄膜為觸媒輔助成長之碳奈米結構:(a)先經氫電漿前處理(試片編號:D1);(b)未經氫電漿前處理(試片編號: D6)。………………………………………………………………………109
圖 4.22以FePt薄膜為觸媒輔助成長之碳奈米結構: (a)先經氫電漿前處理(試片編號:A1);(b)省略氫電漿前處理(試片編號: A6)。………………………………………………………………………110
圖 4.23 以CoPt薄膜為觸媒輔助成長之碳奈米結構: (a)先經氫電漿前處理(試片編號:B1);(b)省略氫電漿前處理(試片編號: B6)。………………………………………………………………………111
圖 4.24 金屬顆粒被碳膜所鑲埋時之SEM形貌(試片編號:B4)。………112
圖 4.25 (a)以FeNi厚膜為觸媒輔助成長碳奈米之HRTEM圖(試片編號:E1) ; (b)竹結狀碳管之成長模型[Saito, et al 1999]。………113
圖 4.26 以Nd2Fe14B薄膜為觸媒輔助成長碳奈米管之HRTEM圖(試片編號:C1)。……………………………………………………………………114
圖 4.27 以Fe薄膜為觸媒輔助成長碳奈米管之HRTEM圖(試片編號:D1)。……………………………………………………………………114
圖 4.28以FePt薄膜為觸媒輔助所成長碳奈米管之HRTEM圖(試片編號:A1)。……………………………………………………………………115
圖 4.29 以FePt薄膜為觸媒輔助所成長碳奈米管管璧之HRTEM(試片編號:A1)。……………………………………………………………………115
圖 4.30 碳管管壁之擇區EELS能譜圖(試片編號:E1)。………………116
圖4.31以Nd2Fe14B薄膜為觸媒輔助成長碳奈米管之HRTEM圖(試片編號:C1)。……………………………………………………………………116
圖 4.32 碳管管璧之干涉條紋影像 (試片編號:A1)。…………………117
圖 4.33 以FePt薄膜為觸媒輔助成長碳奈米管之SEM形貌:(a)側視圖; (b) 上視圖,去除觸媒後之SEM形貌:(c)側視圖; (d)上視圖(試片編號:A1)。……………………………………………………………………118
圖 4.34為以CoPt薄膜為觸媒輔助成長碳奈米管之SEM形貌:(a)側視圖; (b) 上視圖,去除觸媒後之SEM形貌:(c)側視圖; (d)上視圖(試片編號:B1)。……………………………………………………………………119
圖4.35 以Nd2Fe14B薄膜為觸媒輔助成長碳奈米管經超音波振盪附著性測試後之SEM形貌(試片編號:C1)。……………………v………………120
圖4.36 以Fe薄膜為觸媒輔助成長碳奈米管經超音波振盪附著性測試後之SEM形貌(試片編號: D1)。……………………………………………120
圖4.37 以FeNi薄膜為觸媒輔助成長碳奈米管經超音波振盪附著性測試後之SEM形貌(試片編號: E1)。…………………………………………120
圖4.38 以FePt薄膜為觸媒輔助成長之碳奈米管之晶格影像(試片編號:A1)。………………………………………………………………121
圖4.39 以FePt薄膜為觸媒所成長之CNTs經超音波振盪附著性測試前後之拉曼光譜比較圖:(a)測試前;(b)測試後(試片編號:A1) 。……………………………………………………………122
圖4.40 以Nd2Fe14B薄膜為觸媒所成長之CNTs經超音波振盪附著性測試前後之拉曼光譜比較圖:(a)測試前;(b)測試後(試片編號:C1)。………………………………………………………………122
圖4.41 以FeNi薄膜為觸媒所成長之CNTs經超音波振盪附著性測試前後之拉曼光譜比較圖:(a)測試前;(b)測試後(試片編號:E1) 。………………………………………………………………123
圖4.42 以Fe薄膜為觸媒所成長之CNTs經超音波振盪附著性測試前後之拉曼光譜比較圖:(a)測試前;(b)測試後(試片編號:D1) 。………………………………………………………v……123
圖 4.43 在590℃下以Nd2Fe14B薄膜為觸媒所成長之CNTs的磁滯曲線:(a)軸向; (b)徑向 (試片編號:C7)。………………………………124
圖 4.44 在717℃下以Nd2Fe14B薄膜為觸媒所成長之CNTs的磁滯曲線:(a)軸向; (b)徑向 (試片編號:C1)。………………………………125
圖 4.45沉積溫度與水平和垂直方向矯頑磁力之關係圖(試片編號:C7,C8, C9,C10,C11和C1)。……………………………………126
圖 4.46 CNTs觸媒端之EDS圖譜:(a)以 Fe為觸媒(試片編號:D1) ; (b) 以Nd2Fe14B為觸媒 (試片編號:C1)。………………………………126
圖 4.47 以FePt薄膜為觸媒所成長之碳管之影像:(a)AFM; (b)MFM和; (c) AFM和相對應的之Line scan圖 (試片編號:A1) 。……………127
圖 4.48 以CoPt薄膜為觸媒所成長之CNT之影像:(a)AFM; (b)MFM; (c)AFM之3-D對照圖和(d)MFM之3-D對照圖(試片編號:B6) 。………………………………………………………………128
圖 4.49 以Fe薄膜為所成長之碳球之影像:(a)AFM和(b)MFM (試片編號:D6) 。………………………………………………………………129
圖 4.50 鑲埋於碳膜下方之CoPt顆粒之影像:(a) AFM;(b)MFM; (c)AFM與(d) 截面之MFM (試片編號:B6) 。…………………………………129
1.Baughman, Ray H., “Materials science: putting a new spin on carbon nanotubes”, Science 290 (2000) 1310-1311.
2.Cao, Huaqiang., Chenyang Tie, and Zheng Xu, “Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior”, Appl. Phys. Lett.,78 (2001) 1592-1594.
3.Chen, Qi and Z. John Zhang., ” Size-dependent superparamagnetic properties of MgFe2 O4 spinel ferrite nanocrystallites”, Appl. Phys. Lett. Vol.73 (1998) 3156-3158.
4.Chou, Stephen Y., “Patterned Magnetic Nanostructures and Quantized Magnetic Disks”, Proceedings of the IEEE, Vol. 85 (1997) 652-671.
5.Chou, Stephen Y. and Peter R. Krauss, ”Quantum magnetic disk” , J. Magn. Magn. Mater, 155 (1996) 151-153.
6.Chou, Stephen, Y., Peter R. Krauss, and Linshu Kong, “Nanoliyhographically defined magnetic structures and quantum magnetic disk”, J. Appl. Phys. 79(8) (1996) 6101-6106.
7.Cullity, B. D., Introduction to magnetic material, London, Addison-wesley publishing company Press, (1972) pp.522-525.
8.Dai, H., J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscope ”, Nature, 384 (1996) 147-150.
9.Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386 (1997) 377-379.
10.Ebbesen, T. W. and P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, 358 (1992) 220-222.
11.Ebbesen, T. W., Carbon Nanotubes Preparation and Properties, CRC Press, ed. by M. Endo (1997) pp.56-58.
12.Ebbesen, T. W., and T. Takada, Carbon nanotube, ed. by M. Endo, and S. Iijima, BPC Wheatons Ltd Press (1996) pp.71-76.
13.Fan, S., M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell,H. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties”, Science, 283 (1999) 512-514.
14.Frank, Stefan, Philippe Poncharal, Z. L. Wang, and Walt A. de Heer, “Carbon Nanotube Quantum Resistors”, Science 280 (1998) 1744-1746.
15.Gao, B., A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, “Electrochemical intercalation of single-walled carbon nanotubes with lithium”, Chem. Phys. Lett., 307 (1999) 153-157.
16.Grobert, N., W. K. Hsu, Y. Q. Zhu, J. P. Hare, H. W. Kroto, D. R. M. Waltona), M. Terrones, H. Terrones, Ph. Redlich, M. Ruehle, R. Escudero and F. Morales , “Enhanced magnetic coercivities in Fe nanowires”, Appl. Phys. Lett., 75 (1999) 3363-3365.
17.Guo, T., P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic Growth of Single-walled Nanotubes by Laser Vaporization”, Chem. Phys. Lett., 243 (1995) 49-54.
18.Haginoyaa, C., Kazuyuki Koike, Yoshiyuki Hirayama, Jiro Yamamoto, Masayoshi Ishibashi, Osamu Kitakami and Yutaka Shimada,“Thermomagnetic writing on 29 Gbit/in.2 patterned magnetic media”, Appl. Phys. Lett., 75, (1999) 3159-3161.
19.Harris, P. J. F., Carbon Nanotubes and Related Structures, New Materials for the Twenty-first Century, Cambridge Press(1999) pp.18-21.
20.Hatta, N. and K. Murata,“Very Long Graphitic Nano-tubules Synthesized by Plasma-decomposition of Benzene”, Chem. Phys. Lett., 217 (1994) 398-403.
21.Iijima, S., “Helical microtubules of graphitic carbon”, Nature, 354 (1991) 56-58.
22.Iwasaki, S. and K. Takemura, “An analysis for the circular mode of magnetization in short wavelength recording”, IEEE Transactions on Magnetics, MAG-11 (5) (1975) 1173-1175.
23.Iwasaki, S. and Y. Nakamura, “An analysis for the magnetization mode for high density magnetic recording”, IEEE Trans. on Magn., MAG-13 (5) (1977) 1272-1277.
24.Jeroen, W., G. Wilder, Liesbeth C. Venema, Andrew G. Rinzler, Richard E. Smalley, Cees Dekker, ” Electronic structure of atomically resolved carbon nanotubes”, Nature, 391 (1998) 59-62 .
25.Koike, K., H. Matsuyama, Y. Hirayama, K. Tanahashi, T. Kanemura, O. Kitakami, and Y. Shimada, ”Magnetic block array for patterned magnetic media”, Appl. Phys. Lett., 78 (2001) 784-786.
26.Leslie-Pelecky, Diandra, L., Reuben D. Rieke, “Magnetic properties of nanostructured materials”, Chem. Mater., 8 (1996) 1770-1783 .
27.Martin, Y., and H. K. Wickramasinghe, “Magnetic imaging by ”force microscopy” with 1000 A resolution”, Appl. Phys. Lett., 50 (1987) 1455-1457
28.Martin, Y., C. C. Willams, and H. K. Wickramasinghe, ”Atomic force microscope-force mapping and profiling on a sub 100-A scale”, J. Appl. Phys., 61, (1987) 4723-4729.
29.Menon, A. K. and B. K. Gupta, “Nanotechnology: A data storage perspective”, Nanostructured Materials, 11 (1999) 965-986.
30.Munoz, E., A. M. Benito, L. C. Estepa, J. Fernandez, Y. Maniette, M. T. Martinez, G. F. de la Fuente, “Structures of Soot Generated by Laser Induced Pyrolysis of Metal Composite Targets”, Carbon 36 (1998) 525-528.
31.O’Grady, K., and H. Laidler, “The limits to magnetic recording — media considerations”, J. of Magnetism and Magnetic Materials 200 (1999) 616-633.
32.Odom, Teri Wang, Jin-Lin Huang, Philip Kim, Charles M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature, 391 (1998) 62-64.
33.Peterson, C., “Taking Technology to the Molecular Level”, Computer, 33 (2000) 46-53.
34.Pirio, G., P Legagneux, D Pribat, K B K Teo, M Chhowalla, G A J Amaratunga and W I Milne, “Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode”, Nanotechnology, 13 (2002) 1-4.
35.Ren, Z. F., Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed., “Growth of a Single Freestanding Multiwall Carbon Nanotube on Each Nanonickel Dot”, Appl. Phys. Lett., 75 (1999) 1086~1089.
36.Sander, J. Tans, Alwin R. M. Verschueren, Cees Dekker, ” Room-temperature transistor based on a single carbon nanotube”, Nature 393 (1998) 49 — 52.
37.Speliotis, D. E., “Magnetic recording beyond the first 100 years”, J. of Magnetism and Magnetic Materials 193 (1999) 29-35.
38.Suda, y., T. Nakazono, K. Ebihara, K. Baba,S. Aoqui, “Pulsed Laser Deposition of Carbon Nitride Thin Films from Graphite Targets”, Carbon 36 (1998) 771-774.
39.Sun, Ming., Giovanni Zangari,a) Mohammad Shamsuzzoha, and Robert M. Metzger, “Electrodeposition of highly uniform magnetic nanoparticle arrays in ordered alumite”, Appl. Phys. Lett., 78 (2001) 2964-2966.
40.Sun, Xiangcheng, Gutierrez, A.; Yacaman, M. Jose; Dong, Xinglong; and Jin, Shouri, “Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni”, Materials Science and Engineering: A 286 (2000) 157 — 160.
41.Takayashi, Shigeru Hirono,Masato Tomita&Shigeru Umemura, “Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon”, Nature, 381 (1996) 772-774.
42.Todorovic, Mladen, Sheldon Schultz, Joyce Wong, and Axel Scherer, “Writing and reading of single magnetic domain per bit perpendicular patterned media”, Appl. Phys. Lett., 74 (1999) 2516-2518
43.Tsai, S. H., F. K. Chiang,, T. G. Tsai, F. S. Shieu, H. C. Shih, “Synthesis and Characterization of the Aligned Hydrogenated Amorphous Carbon Nanotubes by Electron Cyclotron Resonace Excitation”, Thin Solid Films, 366, (2000) 11-15 .
44.Vigolo, Brigitte, Alain Pénicaud, Claude Coulon, Cédric Sauder, René Pailler, Catherine Journet, Patrick Bernier, and Philippe Poulin, ” Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes”, Science, 290 (2000) 1331-1334.
45.Wang, Q. H., A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. P. H. Chang, “A nanotube-based field-emission flat panel display”, Appl. Phys. Lett., 72 (1998) 2912-2913.
46.White, R. L., “The physical boundaries to high-density magnetic recording”, J. of Magnetism and Magnetic Materials 209 (2000) 1-5.
47.Xu, Xueping, and G. R. Brandes, “A method for fabricating large-area, patterned, carbon nanotube field emitters”, Appl. Phys. Lett., 74 (1999) 2549-2551.
48.Zhang, X.X., a,*,G.H Wen,Shaoming Huangb,Liming Daib,Ruiping Gaoc,zhong L.Wangc, “Magnetic properties of Fe nannoparticles trapped at the tips of the aligned carbon nanotube”, J. of Mag. and Mag. Mater., 231(2001) L9-L12 .
49.Zhog, Q., D. Innis, K. Kjoller and V. B. Elings, “Fractured polymer/silicsn fiber surface studied by tapping mode atomic force microscopy”, Surf. Sci. Lett., 290, (1993) L688-L692.
50.尹邦躍, “奈米科技是如何發展起來的? ”, ITRI-IT IS-Rational (2002) 1-6.
51.尹邦躍, “為什麼奈米科技受到特別重視? ”, ITRI-IT IS-Rational (2002) 1-6.
52.尹邦躍, “奈米科技應用在哪些領域? ”, ITRI-IT IS-Rational (2002) 1-6.
53.邱裕煌, 林鶴南, 科儀新知, 19(3), (1997) 41-48.
54.姚俊敏, ”納米晶粒Nd2Fe14B/a-Fe雙相合金之磁性質”, 清華大學材料系博士論文 (1995) pp.29-31和pp. 48-49.
55.陳家俊, 藍榮煌, “奈米科技的發展與應用” http://www.ssttpro.com.tw/pj30pg127.asp?tag=4711 (2002) 1-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top