跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘有涵
研究生(外文):Yu-Han Pan
論文名稱:鎂合金(AZ61)表面改質之電化學特性研究
論文名稱(外文):The Electrochemical Study on Anodic Treatment of Mg Alloy (AZ 61)
指導教授:朝春光
指導教授(外文):Chuen-Guang Chao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:122
中文關鍵詞:鎂合金電化學陽極處理化成處理直流極化交流阻抗
外文關鍵詞:Magnesium alloyElectrochemistryAnodic TreatmentChemical conversion treatmentPolarizationAC impedance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:441
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗係利用化成處理及陽極處理法改善AZ61鎂合金表面之抗腐蝕性,以化成處理法增加鎂合金基材與陽極處理膜間之附著性,化成處理主要以磷酸為主,再以矽酸溶液封孔;陽極處理液則以非鉻系之鹼金族矽酸溶液為主。在施以外加電壓條件下進行強迫氧化反應。經電化學動態極化曲線及靜態交流阻抗於3.5%NaCl水溶液中測試,可得知反應形成之矽酸鹽氧化膜具有良好之抗腐蝕性。實驗結果顯示鎂合金原材之腐蝕電壓為-1.536V (相對於飽和氯化銀參考電極),腐蝕電流為1.613 mA/cm2,表面電阻值為204.6 ohm,經表面處理後試片之腐蝕電壓提升為
-0.182V,腐蝕電流降低為1.401E-6 A/cm2,表面電阻增為48724 ohm,較鎂合金原材明顯增加許多,達表面改質之效果。以顯微鏡觀察陽極處理表面可得知為多孔狀結構,孔徑約為50微米。成份分析結果顯示陽極氧化膜表面之主要成份為Mg、Al、O、Si及鹼金族元素。以EPMA 量測鈉系列陽極處理膜,厚度約為35微米,鉀系列陽極處理膜厚約為17微米。經表面處理後試片之硬度值由鎂合金原材之69.5 HV提升為132.1 HV,顯示經表面改質後抗磨耗性質亦增加。
In this study, the corrosion resistance of AZ61 Magnesium was improved by chemical conversion treatment and subsequent anodic treatment. Chemical conversion treatment can enhance the adhesion between substrate and the following anodic films. Phosphoric acid was main component used in chemical conversion treatment. Aqueous slicate solution was applied for sealing. The electrolyte of anodic treatment was mostly composed of alkali silicates but non-chromate salts. External applied voltages forced Mg alloys to oxidization. The resulting anodic oxides showed good corrosive resistance by employing potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution. The experimental results implied that the corrosion potential of untreated Mg alloy was -1.536V vs saturated Ag/AgCl electrode, the current density was 1.613 mA/cm2,and the passive resistance was 204.6 ohm. After the surface treatments, the corrosion potential of the treated Mg alloy was raised to -0.182V vs saturated Ag/AgCl electrode, the current density was lowered to 1.401E-6 A/cm2,and the passive resistance was increased to 48724 ohm. However, these two-step treatments improved the surface properties of Mg alloys. The surface morphology of the anodic film was examined by microscopes. The film exhibited porous structure and the diameter of the pores was about 50 micron meter. The composition analysis suggested that the anodic films were mainly composed of Mg、Al、O、Si and alkali metals. From the observation of Electron Probe X-Ray Microanalyzer (EPMA), the thickness of coating, forming in sodium-containing solution and in potassium-containing solution were about 35 micron meter and 17 micron meter, respectively. The hardness of the alloy was increased from 69.5 HV to 132.1 HV after anodizing. It is obvious that the abrasive resistance of Mg alloy with anodic coating can also be improved.
摘 要……………………………………………………………………I
目 錄 …………………………………………………………………IV
圖目錄 …………………………………………………………………VI
表目錄 …………………………………………………………………X
第一章 前言……………………………………………………………1
第二章 文獻回顧………………………………………………………3
2.1 鎂合金(Magnesium Alloys)………………………………………3
2.1.1 鎂的來源與分類………………………………………………3
2.1.2 鎂合金之優異特性與缺點……………………………………6
2.1.3 鎂合金未來發展潛力 ………………………………………11
2.2 鎂合金表面改質 ………………………………………………12
2.2.1 化成處理(Chemical Conversion Treatment) ………………12
2.2.2 陽極處理(Anodizing) ………………………………………15
第三章 理論背景………………………………………………………22
3.1 直流極化法 (DC Polarization)…………………………………22
3.1.1 活性極化(Activity Polarization) ……………………………24
3.1.2 濃度極化(Concentration Polarization)………………………25
3.1.3 鈍化(Passivity)………………………………………………27
3.2 交流阻抗理論(AC Impedance Theory)…………………………28
3.2.1 交流阻抗簡介 ………………………………………………28
3.2.2 交流阻抗理論背景 …………………………………………30
3.2.3 等效電路(Equivalent Circuit) ………………………………32
3.3 鈍化層厚度 ……………………………………………………40
第四章 實驗方法………………………………………………………42
4.1 材料準備 ………………………………………………………42
4.2 化成處理 ………………………………………………………42
4.3 陽極處理 ………………………………………………………44
4.4 電化學測試 ……………………………………………………46
4.4.1 直流極化法 …………………………………………………46
4.4.2 交流阻抗分析 ………………………………………………46
4.5 微結構分析 ……………………………………………………48
4.5.1顯微鏡分析……………………………………………………48
4.5.2 X光能量散佈光譜儀分析……………………………………49
4.5.3電子微探儀分析………………………………………………51
4.6 微硬度測試……………………………………………………51
第五章 結果與討論……………………………………………………52
5.1 電化學分析………………………………………………………52
5.1.1 化成處理之直流極化測試…………………………………52
5.1.2陽極處理之直流極化測試……………………………………56
5.1.3 化成處理之交流阻抗分析…………………………………67
5.1.4 陽極處理之交流阻抗分析…………………………………72
5.2 光學顯微鏡分析…………………………………………………81
5.3 掃瞄式電子顯微鏡分析…………………………………………84
5.4 X光能量散佈光譜儀分析…………………………………96
5.5穿透式電子顯微鏡分析…………………………………………101
5.6 電子微探儀分析………………………………………………105
5.7 微硬度測試……………………………………………………112
第六章 結論…………………………………………………………114
參考文獻……………………………………………………………116
[1]蔡幸甫,「鎂合金在電子產品上的應用與產業概況」,工業材料,第152期,62-71頁,1999年8月。
[2] S. Ono, T. Osaka, K. Asami, and N. Masuko, “Oxide Films on Magnesium and Magnesium Alloys by Anodizing and Chemical Conversion Coatings”, Corrosion Reviews, 16, 1-2, pp. 175-190, 1998.
[3] H. Umehara, S. Terauchi and M. Takaya, “Structure and Corrosion Behavior of Conversion Coatings on Magnesium Alloys”, Materials Science Forum, 350-351, pp273-282, 2000.
[4] M. A Gonzalez-Nunez, et al., “A Non-Chromate Conversion Coatings for Magnesium Alloys and Magnesium-Based Metal Matrix Composites”, Corrosion Science, 37, 11, pp1763-1772, 1995.
[5] J. Flis, et al., “Characterisation of Phosphate Coatings on Zinc, Zinc-Nickel and Mild Steel by Impedance Measurement in Dilute Sodium Phosphate Solutions”, Corrosion Science, 39, 10-11, pp 1757-1770, 1997.
[6] Metals Handbook Vol. 13: Corrosion, ASM, pp. 434-456, 1990.
[7]姚美意,周邦新,「鎂合金耐蝕表面處理的研究發展」,材料保護,第34卷第10期,19-21頁,2001年10月。
[8] M. M. Avedesian, H. Baker, Magnesium and Magnesium Alloys, ASM Specialty Handbook, pp 138-162.
[9] F. A. Bonilla, et al., “Formation of Anodic Films on Magnesium Alloys in an Alkaline Phosphate Electrolyte”, Journal of The Electrochemical Society, 149, 1, B4-B13, 2002.
[10] O. Khaselev, D. Weiss, and J. Yahalom, “Anodizing of Pure Magnesium in KOH-Aluminate Solutions under Sparking”, Journal of The Electrochemical Society, 146, 5, pp 1757-1761, 1999.
[11] H. Takahashi, K. Fujimoto, and M. Nagayama, “Effect of pH on the Distribution of Anions in Anodic Oxide Films Formed on Aluminum in Phosphate Solutions”, Journal of The Electrochemical Society, 135, 6, pp1349-1353, 1988.
[12] O. Khaselev, D. Weiss, and J. Yahalom, “Structure and composition of anodic films formed on binary Mg-Al alloys in KOH-aluminate solutions under continuous sparking”, Corrosion Science, 43, pp 1295-1307, 2001.
[13] Y. Liu, et al., “Anodic film growth on an Al-21at%Mg alloy”, Corrosion Science, 44, pp 1133-1142, 2002.
[14] O. Khaselev, J. Yahalom, “Constant Voltage Anodizing of Mg-Al Alloys in KOH-Al(OH)3 Solutions”, Journal of The Electrochemical Society, 145, 1, pp 190-193, 1998.
[15] S. Ono, H. Ichinose, and N. Masuko, “The High Resolution Observation of Porous Anodic Films Formed on Aluminum in Phosphoric Acid Solution”, Corrosion Science, 33, 6, pp 841-850, 1992.
[16] M. J Graham, R. J. Hussey, “Characterization and growth of oxide films”, Corrosion Science, 44, pp319-330, 2002.
[17] W. G. Wood, Metals Handbook Vol. 5: Surface Cleaning, Finishing, and Coating, ASM, pp 628-649, 1990.
[18] E. F. Emley, Principles of Magnesium Technology, Pergamon Press Ltd., New York, pp670-735, 1966.
[19]余鐵成,表面處理,全華科技圖書股份有限公司,1992年
[20]薛文彬等,「鎂合金微等離子體氧化膜的特性」,材料科學與工業,第5卷第2期,89到92頁,1997年6月。
[21] F. Stippich, et al., “Enhanced corrosion protection of magnesium oxide coatings on magnesium deposited by ion beam-assisted evaporation”, Surface and Coatings Technology, 103-104, pp29-35, 1998.
[22]賴耿陽,非鐵金屬材料,復漢出版社,台南,1990年
[23] H. Proffit, Magnesium and Magnesium Alloys, ASM, Vol. 2, pp. 798.
[24] O. Lunder, J.E. Lein, T.Kr. Aune, and K. Nisanciogiu, “The Role of Mg17Al12 Phase in the Corrosion of Mg Alloy AZ91”, Corrosion, 45, 9, pp741-748, September 1989.
[25] H. P. Godard, et al., The Corrosion of Light Metals, 1967.
[26] B. L. Mordike and T. Ebert, “Magnesium Properties-Applications -Potential”, Materials Science and Engineering, A302, 2001, pp. 37-45.
[27]王文樑,「鎂合金於國外汽車產業之應用現況與研發趨勢」,金屬工業,第34卷第3期,58-65頁,2000年5月。
[28]楊智超,「鎂合金材料特性及新製程發展」,工業材料,第152期,72-80頁,1999年8月。
[29]李啟賢,「鎂合金電子產品機殼之表面處理」,鑄造月刊,第135期,10-18頁,2000年12月。
[30] A. K. Sharma, “Chromate Conversion Coatings for Magnesium Lithium Alloys”, Metal Finishing, 87, 2, pp 73, 1989.
[31] WO Pat, 9947729, 1999.
[32] US Pat, 5380374, 1995.
[33] US Pat, 5683522, 1997.
[34] K. Huber, “Anodic Formation of Coatings on Magnesium, Zinc, and Cadmium”, Journal of The Electrochemical Society, 100, 8, pp 376-382, 1953.
[35] I. Van Roy, H. Terryn, G. Goeminne, “Study of the phosphating treatment of aluminium surfaces: role of the activating process”, Colloids and Surfaces A, 136, pp 89-96, 1998.
[36] US Pat, 5470664, 1995.
[37] US Pat, 5230589, 1993.
[38] US Pat, 5266412, 1993.
[39] US Pat, 4978432, 1990.
[40] US Pat, 4744872, 1988.
[41] US Pat, 4620904, 1986.
[42] F. Keller, M. S. Hunter, and D. L. Robinson, “Structural Featuresnof Oxide Coatings on Aluminum”, Journal of The Electrochemical Society, 100, 9, pp 411-419, 1953.
[43] J. M. Albella, I. Montero, J. M. Martinez Duart, “Dielectric Breakdown Process in Anodic Ta205 and Related Oxides”, Journal of Materials Science, 26, pp 3422, 1991.
[44] S. Ikonopisov, “Problems and Conditions in Galvanoluminescence, A Critical Review”, Electrochimica Acta, 20, pp 783, 1975.
[45] Z. Chen, M. C. Jin, “Properties of Modified Anodic Spark Deposited Alumina Porous Ceramic Films as Humidity Sensors”, Journal of American Ceramic Society, 74, 6, pp 1325, 1991.
[46]柯賢文,腐蝕及其防制,全華科技圖書股份有限公司,1995年
[47]鮮祺振,腐蝕控制,徐氏基金會,台北,1998年
[48] L. L. Shreir et al., Corrosion, Butterworth-Heinemann, 1994.
[49] J.C. Scully., Corrosion: aqueous processes and passive films, Academic, 1983.
[50] Mars G. Fontana, Corrosion Engineering, McGraw-Hill, 1987.
[51] J. Ross Macdonald, Impedance Spectroscopy, John Wiley & Sons, 1987.
[52]吳浩清,李永舫,電化學動力學,科技圖書股份公司,台北,2001年。
[53] F. Mansfeld, H. Shih, and C. H. Tsai, “Analysis of EIS Data for Common Corrosion Process, Electrochemical Impedance: Analysis and Interpretation”, Corrosion Science, pp 37-53, 1993.
[54] J. R. Macdonald, “Impedance Spectroscopy: Old Problems and New Development”, Electrochemical Acta, 35, pp l483, 1990.
[55]F.Mansfeld, W. J. Lorenz, “Electrochemical Impedance Spectroscopy Application in Corrosion Science and Technology, in Techniques for Characterization of Electrodes and Electrochemical Processes”, Corrosion Science, pp 581, 1991.
[56] K. S. Cole, R. H. Cole, “Dispersion and Absorption in Dielectric. I. Alternating Current Characteristics”, The Journal of Chemical Physics, 9, pp 341-351, 1941.
[57] J. R .Macdonald, “Theory of AC Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes”, Physical Reviews, 92, pp 4-17, 1953.
[58] R. J. Friauf, “Polarization Effects in the Ionic Conductivity of Silver Bromide”, The Journal of Chemical Physics, 22, pp 1329-1338, 1954.
[59] J. R. Macdonald, “Capacitance and Conductance Effects in Photoconducting Alkali Halide Crystals”, The Journal of Chemical Physics, 23, pp 275-295, 1955.
[60] J. E Bauerle, “Study of Solid Electrolyte Polarization by a Complex Admitttance Method”, The Journal of Physics and Chemistry of Solids, 30, pp 2657-2670, 1969.
[61]王佳等,「具有擴散效應的交流阻抗譜參數解析」,中國腐蝕與防護學報,第9卷第1期,11-20頁,1989年3月。
[62] B. Kinsella, Y. J. Tan, and S. Bailey, “Electrochemical Impedance Spectroscopy and Surface Characterization Techniques to Study Carbon Dioxide Corrosion Product Scales”, Corrosion, 54, 10, pp 835-842, 1998.
[63] M. F. Kendig, Mansfeld, and S. Tsai, “Determination of the Long Term Behavior of Coated Steel with A.C. Impedance Measurements”, Corrosion Science, 23, 4, pp 317-329, 1983.
[64] J. Pan, D. Thierry, and C. Leygraf, “Electrochemical Impedance Spectroscopy Study of the Oxide Passive Film on Titanium for Implant Application”, Electrochimica Acta, 41, 7, pp 1143-1153, 1996.
[65] S. F. Mertens, et al., “Short -Term Deterioration of Polymer- Coated 55% AI-Zn: Part 2- Impedance Model for Inhibitor-Modified Surface”, Corrosion Science, 55, 2, pp 151-156, 1999.
[66] J. Hitzig, et al., “AC- Impedance Measurements on Porous Aluminium Oxide Films”, Corrosion Science, 24, 11/12, pp 945-952, 1984.
[67] J. R. Park, D. Macdonald, “Impedance Studies of the Growth of Porous Magnetite Films on Carbon Steel in High Temperature Aqueous Systems”, Corrosion Science, 23, 4, pp 295-315, 1983.
[68] F. Mansfeld, M. W. Kendig, “Impedance Spectroscopy as Quality Control and Corrosion Test for Anodized Al Alloys”, Corrosion, 41, 8, pp 490-492, 1985.
[69] D. P. Almond et al., “The Determination of Hopping Rates and Carrier Concentrations in Ionic Conductors by a New Analysis of AC Conductivity”, Solid State Ionic, 8, pp 158-164, 1983.
[70] D. P. Almond, A. R. West, “Mobil Ion Concentrations in Solid Electrolytes from an Analysis of AC Conductivity”, Solid State Ionic, 9-10, pp 277-282, 1983.
[71] C. L. Zeng, W. Wang, W. T. Wu, “Electrochemical impedance models for molten salt corrosion”, Corrosion Science, 43, pp 787-801, 2001.
[72] M. Itagaki, T. Ono, K. Watanabe, “Application of electrochemical impedance spectroscopy to solvent extraction of metallic ions”, Electrochimica Acta, 44, pp 4365-4371, 1999.
[73] John M. McIntyre, Ha Q. Pham, “Electrochemical impedance spectroscopy: a tool for organic coatings optimizations”, Progress in Organic Coatings, 27, pp 201-207, 1996.
[74] J. R. Scully, S. T. Hensley, “Lifetime Prediction for Organic Coatings on Steel and a Magnesium Alloy Using Electrochemical Impedance Methods”, Corrosion Science, 50, 9, pp 705-716, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top