跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 20:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃智遠
研究生(外文):Chih-Yuan Huang
論文名稱:金屬-鐵電薄膜-Al2O3絕緣層-半導體(MFIS)結構之SrxBiyTa2O9薄膜的電性和微觀結構研究
論文名稱(外文):Electrical Properties and Microstructure of SrxBiyTa2O9 Thin Film on Metal-Ferroelectric-Insulator-Semiconductor (MFIS) Structure Using Al2O3 as Buffer Layer
指導教授:陳三元陳三元引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:125
中文關鍵詞:MFISSBTC-VMemory windowsAl2O3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:649
  • 評分評分:
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討不同Sr/Bi含量比的SBT鐵電薄膜覆鍍於Al2O3超薄膜的矽基板上,經過超高溫度熱處理後(>800oC),模擬MFIS結構的單一電晶體(one-transistor)形式其電性上的變化情形。
SBT薄膜的製備採用金屬有機分解法方式(MOD),Al2O3超薄膜是使用電子束蒸鍍系統方式製備。記憶視窗(Memory window)主要是MFIS結構電性量測的重要指標,其形成的原因是SBT鐵電薄膜矯頑電場所致,而SBT矯頑電場的變化與Sr/Bi含量比有關,當Bi含量越趨近於2.0時,矯頑電場會越大,因而記憶視窗也會越大。當燒結溫度越高時,高含量Bi的SBT記憶視窗會有變大情形,可能是Bi高溫過量揮發使成份比趨近於2.0所致。C-V量測時,當外加電壓超過10V以後,記憶視窗會因絕緣層界電崩潰所形成的電荷穿透而有變小的現象。在Bi含量越高的SBT會因高溫擴散至Si介面而增加了雜質濃度,使空乏區的電荷量局部提高,造成C-V曲線有偏移和變形的情形。另一方面,漏電流密度會隨著Bi含量的增加而越來越低,這可能是Bi在Pt或Al2O3介面處形成氧化物提高了電阻所致。除此之外,本實驗還使用反應式電漿濺鍍方式置備ZrO2薄膜的矽基板做為對照組,然而電性結果卻比Al2O3差,可能是高功率的電漿造成ZrO2薄膜受損,增加了陷阱電荷密度因而降低了薄膜的品質。

We have investigated the electrical properties of Metal — Ferroelectric — Insulator - Semiconductor (MFIS) structure, in which SrxBiyTa2O9 (SBT) and Al2O3 were used as ferroelectric and insulator layers, respectively. When fabricating the MFIS structure, SBT thin films were deposited by metal organic deposition (MOD) method and Al2O3 buffered layers were prepared by dual E-gun evaporation and post oxidation. It was found that memory window measured from Capacitance-Voltage (C-V) properties would be related to the coercive field of SBT with different Bi ratios. It has been reported that the coercive field would increase when Bi contents in SBT were closed to 2.0. Therefore, the larger memory window after high temperature annealing is related to the factor that the originally higher Bi composition tend to 2.0 after vaporization. Moreover, the width of memory window decreases with applied the voltage over 10V, indicating the charge injection caused by dielectric breakdown of Al2O3 insulator. On the other hand, the reduced leakage current density with the higher Bi content is attributed to the formation of interfacial Bi-oxide. However, the bending and shift in C-V curve with the higher Bi content may be the result of larger Si surface donor concentration derived from Bi diffusion after annealing. For comparison, ZrO2 films were deposited by r.f. sputtering and also used as the buffered layers in MFIS structure. However, its electrical properties were inferior to those with Al2O3

中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
圖 目 錄 viii
第一章 緒論 1
1.1 前言 1
1.2 鐵電薄膜在非揮發性隨機記憶體的應用與原理 2
1.3 SrBi2Ta2O9鐵電薄膜在MFIS結構上之相關研究 4
1.3.1 Sr/Bi含量比例變化之影響 5
1.3.1.1 Sr/Bi含量的變化對電性、表面結構和晶體結構之影響 5
1.3.1.2 Bi含量變化對電性的影響 6
1.3.1.3 燒結溫度對電性的影響 6
1.3.1.4 上電極退火對電性的影響 6
1.3.2 絕緣層的種類在電性上的影響 8
1.3.2.1 矯頑電壓與絕緣層關係 8
1.3.2.2 絕緣層的介電常數對記憶視窗的影響 9
1.3.2.3 絕緣層厚度對記憶視窗的影響 9
1.3.2.4 不同絕緣層基板對SBT表面微觀結構的影響 10
1.3.3 SBT製程方式對電性上的影響 11
1.3.3.1 高溫熱處理過程對電性的影響 11
1.3.3.2 介面氧化物對電性的影響 12
1.3.3.3 不同SBT製程對電性的影響 12
1.3.4 漏電流量測與記憶視窗關係 13
1.4 MFIS結構的絕緣層之選擇 14
1.4.1 氧化鋯薄膜之物理沈積覆鍍法 16
第二章 研究步驟與實驗方法 17
2.1 鐵電陶瓷薄膜製備 17
2.1.1 金屬有機先驅物之合成與定量 17
2.1.2 金屬有機溶液配置及分析 18
2.2 MFM和MFIS基板之置備 18
2.2.1 MFM基板的置備 18
2.2.2 MFIS基板的準備 19
2.2.2.1 氧化鋁絕緣層之置備 19
2.2.2.2 氧化鋯絕緣層之置備 19
2.3 SBT鐵電薄膜製備 20
2.4 鐵電陶瓷薄膜之特性量測與電性量測 20
2.4.1 XRD分析 20
2.5.2 SEM顯微結構觀察 21
2.5.3 TEM顯微結構觀察 21
2.5 電性量測 21
2.5.1 P-E 遲滯曲線特性量測 21
2.5.2 C-V電容-電壓特性量測 21
2.5.3 I-V 漏電流量測 22
第三章 實驗結果 23
3.1 單層鐵電陶瓷薄膜於Pt基板上表面結構觀察結果 23
3.2 雙層鐵電陶瓷薄膜於Pt基板上之表面結構的觀察結果 25
3.3 多層鐵電陶瓷薄膜於Pt基板上之研究結果 26
3.4 多層鐵電陶瓷薄膜於Al2O3基板上之結果 30
3.5 多層鐵電陶瓷薄膜於ZrO2基板上之結果 34
第四章 結果探討 37
4.1 鐵電陶瓷薄膜在Al2O3基板上的電性分析 37
4.1.1 電容-電壓曲線圖分析探討 37
4.1.2 記憶視窗-外加電壓關係圖的結果分析 40
4.1.3 燒結溫度對記憶視窗的影響 42
4.1.4 漏電流密度分析 43
4.2 鐵電陶瓷薄膜在ZrO2基板上的電性分析 44
4.2.1 電容-電壓曲線圖分析探討 44
第五章 結論 46
附圖 48
參考文獻 105
圖 目 錄
圖1-1 原始鐵電記憶體模型示意 48
圖1-2 鐵電薄膜與矽晶體結合之記憶體結構 48
圖1-3 1T-1C type鐵電記憶體電路圖 49
圖1-4 FET-type鐵電記憶體操作原理 49
圖1-5 1T-1C type鐵電記憶體操作原理 50
圖1-6 SBT(x/y/2)鐵電薄膜之P-E電滯曲線 51
圖1-7 SBT(x/2.4/2.0)鐵電薄膜之XRD繞射光譜 51
圖1-8 Bi含量對SBT鐵電薄膜的2Pr和2Ec的影響 52
圖1-9 SrBi2xTa2O9鐵電薄膜之XRD圖(x=0~2.0) 52
圖1-10 2Pr值的變化(a)Sr缺少(b)Bi過量 53
圖1-11 SrBi2xTa2O9鐵電薄膜不同Bi含量未上電極退火之漏電流密度(a)x=0.8(b)x=1.0(c)x=1.2(d)x=1.4(e)x=1.6 54
圖1-12 SrBi2xTa2O9鐵電薄膜不同Bi含量上電極退火之漏電流密度(a)x=0.8(b)x=1.0(c)x=1.2(d)x=1.4(e)x=1.6 54
圖1-13 Al/SBT/CeO2/Si(100)MFIS結構的理論與量測之C-V特性 55
圖1-14a MFIS結構電壓在空乏-反轉區模式之I-V特性 55
圖1-14b MFIS結構電壓在累積區模式之I-V特性 56
圖1-15 MFIS結構在累積區和空乏區模式之I-V特性 56
圖2-1 MOD鍍膜流程圖 57
圖2-2 RT66A量測遲滯曲線之外加電壓波形 58
圖3-1 Sr0.8Bi2.4Ta2O9單層薄膜於Pt基板上,在氧氣氣氛下經不同溫度燒結半小時X-ray繞射圖譜 59
圖3-2 Sr0.8Bi2.4Ta2O9單層薄膜於Pt基板上,在氧氣氣氛下經不同溫度燒結半小時之SEM照片(a)700oC(b)750 oC(c)800 oC 60
圖3-3 Sr0.8BiyTa2O9(y=2.2、2.3、2.4)單層薄膜於Pt基板上氧氣氛下800oC燒結半小時X-ray繞射圖 61
圖3-4 Sr0.8BiyTa2O9(y=2.2、2.3、2.4)單層薄膜於Pt基板上氧氣氣氛下750oC燒結半小時SEM照片(a)Bi=2.2 (b)Bi=2.3 (c)Bi=2.4 62
圖3-5 Sr0.85Bi2.4Ta2O9單層薄膜不同熱處理方式的SEM圖(a)薄膜先400oC焦化處理,最後再700oC結晶化(b)薄膜直接700oC焦化和結晶化處理 63
圖3-6 Sr0.85Bi2.4Ta2O9單層薄膜不同熱處理方式的SEM圖(a)薄膜先400oC焦化處理,最後再750oC結晶化(b)薄膜直接750oC焦化和結晶化處理 64
圖3-7 Sr0.85Bi2.4Ta2O9單層薄膜不同熱處理方式的SEM圖(a)薄膜先400oC焦化處理,最後再800oC結晶化(b)薄膜直接800oC焦化和結晶化處 65
圖3-8 Sr0.85Bi2.4Ta2O9單層薄膜不同熱處理方式的x-ray繞射圖譜(a) 薄膜先400oC焦化處理,最後再經不同高溫結晶化(b)薄膜於不同高溫作焦化和結晶化處理 66
圖3-9 Sr0.85Bi2.4Ta2O9薄膜在Pt基板上不同熱處理分式SEM照片,B﹦焦化(Baking),A﹦結晶化(Annealing) 67
圖3-10 不同Sr比例的SrxBi2.4Ta2O9多層薄膜在Pt基板上經800oC熱處理之SEM照片(a)Sr=0.75(b)Sr=0.8(c)Sr=0.85 68
圖3-11 不同Bi比例的Sr0.8BiyTa2O9多層膜在Pt基板上經800oC熱處理之SEM照片(a)Bi=2.2(b)Bi=2.3(c)Bi=2.4 69
圖3-12 Sr0.8Bi2.4Ta2O9多層膜在Pt基板上經不同熱處理溫度之SEM照片(a)700oC(b)750oC(c)800oC 70
圖3-13 不同Sr比例的SrxBi2.4Ta2O9多層薄膜在Pt基板上經800oC熱處理之X-ray繞射圖譜 71
圖3-14 不同Bi比例的Sr0.8BiyTa2O9多層膜在Pt基板上經800oC熱處理之X-ray繞射圖譜 71
圖3-15 Sr0.8Bi2.4Ta2O9多層膜在Pt基板上經不同熱處理溫度之X-ra繞射圖譜 72
圖3-16 不同Sr比例的SrxBi2.4Ta2O9多層薄膜在Pt基板上經800oC熱處理之電性P-E遲滯曲線 72
圖3-17 不同Bi比例的Sr0.8BiyTa2O9多層膜在Pt基板上經800oC熱處理之電性P-E遲滯曲線 73
圖3-18 Sr0.8Bi2.4Ta2O9多層膜在Pt基板上經不同熱處理溫度之電性P-E遲滯曲線 73
圖3-19 Sr0.8BiyTa2O9多層膜在Al2O3基板上燒結溫度800oC之SEM圖(a)y=2(b)y=2.2(c)y=2.4(d)y=2.8 74
圖3-20 Sr0.8BiyTa2O9多層膜在Al2O3基板上燒結溫度850oC之SEM圖(a)y=2(b)y=2.2(c)y=2.4(d)y=2.8 75
圖3-21 Sr0.8BiyTa2O9多層膜在Al2O3基板上燒結溫度900oC之SEM圖(a)y=2(b)y=2.2(c)y=2.4(d)y=2.8 76
圖3-22 不同Bi含量的Sr0.8BiyTa2O9多層膜在Al2O3基板上,燒結800oC之x-ray繞射圖譜 77
圖3-23 不同Bi含量的Sr0.8BiyTa2O9多層膜在Al2O3基板上,燒結850oC之x-ray繞射圖譜 77
圖3-24 不同Bi含量的Sr0.8BiyTa2O9多層膜在Al2O3基板上,燒結900oC之x-ray繞射圖譜 78
圖3-25 Sr0.8BiyTa2O9多層膜在Al2O3基板上燒結溫度800oC的C-V曲線圖(a)y=2.0 (b)y=2.2 (c)y=2.4 (d)y=2.8 79
圖3-26 Sr0.8BiyTa2O9多層膜在Al2O3基板上燒結溫度850oC的C-V曲線(a)y=2.0(b)y=2.2(c)y=2.4(d)y=2.8 80
圖3-27 Sr0.8BiyTa2O9多層膜在Al2O3基板上燒結溫度900oC的C-V曲線(a)y=2.0(b)y=2.2(c)y=2.4(d)y=2.8 81
圖3-28 Sr0.8BiyTa2O9多層膜在Al2O3基板上燒結溫度800oC記憶視窗-外加電壓關係圖 82
圖3-29 Sr0.8BiyTa2O9多層膜在Al2O3基板上燒結溫度850oC記憶視窗-外加電壓關係圖 82
圖3-30 Sr0.8BiyTa2O9多層膜在Al2O3基板上燒結溫度900oC記憶視窗-外加電壓關係圖 83
圖3-31 Sr0.8Bi2Ta2O9多層膜在Al2O3基板上不同燒結溫度之記憶視窗-外加電壓關係圖 83
圖3-32 Sr0.8Bi2.2Ta2O9多層膜在Al2O3基板上不同燒結溫度之記憶視窗-外加電壓關係 84
圖3-33 Sr0.8Bi2.4Ta2O9多層膜在Al2O3基板上不同燒結溫度之記憶視窗-外加電壓關係 84
圖3-34 Sr0.8Bi2.8Ta2O9多層膜在Al2O3基板上不同燒結溫度之記憶視窗-外加電壓關係 85
圖3-35 Sr0.8Bi2.4Ta2O9多層膜在Al2O3基板上在外加電壓10V下電容與燒結溫度關係圖 86
圖3-36 Sr0.8Bi2.8Ta2O9多層膜在Al2O3基板上在外加電壓10V下電容與燒結溫度關係圖 86
圖3-37 Sr0.8BiyTa2O9多層膜在Al2O3基板上在外加電壓10V燒結溫度800oC下電容與Bi含量關係圖 87
圖3-38 Sr0.8BiyTa2O9多層膜在Al2O3基板上在外加電壓10V燒結溫度900oC下電容與Bi含量關係圖 87
圖3-39 Sr0.8BiyTa2O9多層膜在Al2O3基板上於外加電壓10V下燒結溫度與電容關係圖 88
圖3-40 Sr0.8BiyTa2O9多層膜在Al2O3基板上不同燒結溫度之不同Bi含量與漏電流關係圖(a)800oC(b)850oC(c)900oC 89
圖3-41 Sr0.8BiyTa2O9多層膜在Al2O3基板上相同Bi含量之不同燒結溫度與漏電流關係圖(a)y=2.0(b) y=2.2(c) y=2.4(d)y=2.8 90
圖3-42 Sr0.8BiyTa2O9多層膜在ZrO2基板上燒結溫度800oC之SEM圖(a)y=2(b)y=2.2(c)y=2.4(d)y=2.8 91
圖3-43 Sr0.8BiyTa2O9多層膜在ZrO2基板上燒結溫度900oC之SEM圖(a)y=2(b)y=2.2(c)y=2.4(d)y=2. 92
圖3-44 Sr0.8BiyTa2O9多層膜在ZrO2基板上燒結溫度800oC之X-ray繞射圖譜 93
圖3-45 Sr0.8BiyTa2O9多層膜在ZrO2基板上燒結溫度900oC之X-ray繞射圖譜 93
圖3-46 Sr0.8BiyTa2O9多層膜在ZrO2基板上燒結溫度800oC的電容-電壓曲線(a)y=2.0(b)y=2.2(c)y=2.4(d)y=2.8 94
圖3-47 Sr0.8BiyTa2O9多層膜在ZrO2基板上燒結溫度900oC的電容-電壓曲線(a)y=2.0(b)y=2.2(c)y=2.4(d)y=2.8 95
圖3-48 Sr0.8BiyTa2O9多層膜在ZrO2基板上不同Bi含量的記憶視窗-外加電壓關係圖 96
圖3-49 Sr0.8BiyTa2O9多層膜在ZrO2基板上燒結溫度800oC的漏電流曲線圖 97
圖3-50 Sr0.8BiyTa2O9多層膜在ZrO2基板上燒結溫度900oC的漏電流曲線圖 97
圖3-51 Sr0.8BiyTa2O9多層膜在ZrO2基板上不同燒結溫度比較之漏電流圖(a)y=2.0(b)y=2.2(c)y=2.4(d)y=2.8 98
圖4-1 Sr0.8BiyTa2O9薄膜燒結溫度在800oC的TEM圖(a)y=2.0 (b)y=2.8 99
圖4-2 Sr0.8Bi2.8Ta2O9薄膜燒結溫度在800oC之(a)TEM圖(b)Bi元素分佈圖(亮點區域) 100
圖4-3 SBT薄膜中Bi含量變化與2Pr和2Ec變化關係圖 101
圖4-4 Sr0.8Bi2.4Ta2O9鐵電陶瓷薄膜在Al2O3基板上燒結溫度為900oC之TEM圖 101
圖4-5 Sr0.8Bi2.8Ta2O9鐵電陶瓷薄膜在Al2O3基板上燒結溫度為900oC之TEM圖 102
圖4-6 圖4-4中非晶質SBT的元素能量分佈圖(EDS) 102
圖4-7 Sr0.8Bi2.8Ta2O9鐵電陶瓷薄膜在ZrO2基板上燒結溫度為900oC之(a)TEM圖(b)EDS-1(c)EDS-2(d)EDS-3 103
續圖4-7 (c)EDS-2 (d)EDS-3 104

1. N. Tanabe, T.Matsuki, S. Saitoh, T. Takeuchi, S. Kobayashi, T. Nakajima, Y. Maejima, Y. Hayashi, K. Amanuma, T. Hase, Y. Miyasaka, T. Kunio,” A ferroelectric capacitor over bit-line (F-COB) cell for high density nonvolatile ferroelectric memories”, VLSI Technology, 1995, p.123
2. Chin, A.; Yang, M.Y.; Chen, S.B.; Sun, C.L.; Chen, S.Y., ” Fast write time and long retention 1T memory”, Device Research Conference, IEEE, (2001), p.18
3. E. Tokumitsu, G. Fujii, and H. Ishiwara, ” Nonvolatile ferroelectric -gate field-effect transistors using SrBi2Ta2O9 / Pt / SrTa2O6 / SiON / Si structures” Appl. Phys. Lett. Vol. 75 , (1999), p.575
4. Messenger, G.C.; Coppage, F.N.,” Ferroelectric memories: a possible answer to the hardened nonvolatile question”, Nuclear Science, IEEE Transactions on, vol.35, (1998), p.1461
5. Ishiwara, H,” Current status and prospects of ferroelectric memories” ,IEDM (2001) , p.33.1.1
6. M.H. Chi; A. Bergemont,” True low-voltage flash memory operations”, Nonvolatile Memory Technology Conference, IEEE, 1996, p.94
7. M.H. Chi; A. Bergemont,” Low-voltage multi-level flash memory: determination of minimum spacing between multi-levels [CMOS]”, Semiconductor Electronics, IEEE 1996 , p.1
8. K.Sugibuchi, Y.Kurogi, and N.Endo, ”Ferroelectric Field Effect Memory Device using Bi4Ti3O12 Film”, J. Appl. Phys. Vol.46, (1975) , p.2877
9. C.A. Paz de Araujo, J.D. Guchiaro, M.C. Scott and L.D. McMillan, International Patent Application, WO93/12542 (1993).
10. K. Amanuma, T. Hase, and Y. Miyasaka,” Preparation and ferroelectric properties of SrBi2Ta2O9 thin films”, Appl. Phys. Lett. Vol.66 ,(1995), p.221
11. T. Mihara, H. Yoshimori, H.i Watanabe, and C. A.Paz de Araujo,”Characteristics of Bismuth Layered SrBi2Ta2O9 Thin Film Capacitor and comparison with Pb(Zr,Ti)O3”, Jpn. J. Appl. Phys. Vol.34, (1995), p.5233
12. M. Noda, Y. Matsumuro, H. Sugiyama and M. Okuyama, “A Fatigue-Tolerant Metal-Ferroelectric-Oxide-Semiconductor Structure with Large Memory Window Using Sr-deficient and Bi-excess Sr0.7Bi2+yTa2O9 Ferroelectric Films Prepared on SiO2/Si Temperature by Pulsed Laser Depositon”, Jpn. J. Appl. Phys., Vol.38, (1999), p.2275
13. M. Okuyama, H. Sugiyama, and M. Noda, “Low-temperature preparation of SrxBi2+yTa2O9 ferroelectric thin by pulsed laser deposition and its application to metal—ferroelectric—insulator—semiconductor structure”, Apply Surface Science, (2000), p.411
14. A. Chin, C.C. Liao,C.H. Lu, W.J. Chen, and C. Tsai, “Device and Reliability of High-K Al2O3 Gate Dielelctric with Good Mobility and Low Qit” , Symposium on VLSI Technology, IEEE, (1999), p.135
15. W.J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, and J. C. Lee, “Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application”, Appl. Phys. Lett., Vol.77, (2000), p.3269
16. W.J. Qi, R.Nieh, B.H. Lee, L. Kang, Y. Jeon,K. Onishi,T. Ngai,S. Banerjee, and J. C. Lee, “MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si”, IEDM, (1999), p.99
17. 呂正傑、詹世雄 毫微米通訊,第五卷第四期
18. J. L. Moll and Y. Tarui, Trans., “A New Solid State Memory Resistor”, Electron Devices (Solid-State Res. Conf. Abs.) ED-10 (1963) p.338
19. S. Y. Wu, “A New Ferroelectric Memory Device, Metal — Ferroelectric - Semiconductor Transistor”, IEEE Trans. Electron Devices ED-21(8) (1974) p.499
20. W. I. Kinney, W. Shepherd, W. Miller, J. Evans and R. Womack, “A Non-Volatile Memory Cell Based on Ferroelectric Storage Capacitors” , IEDM, (1987), p.850
21. T. Kanashima and M.Okuyama, “Analysis of High Frequency Capacitance-Voltage Characteristics of Metal-Ferroelectrics-Insulator-Silicon Structure”, Jpn. J. Appl. Phys. Vol.38, (1999) , p.2044
22. T. Atsuki, N. Soyama, T. Yonezawa and K. Ogi, “Preparation of Bi-Based Ferroelectric Thin Flims by Sol-Gel Method”, Jpn. J. Appl. Phys., part 1 ,Vol.34 (1995), p.5096
23. H. Watanabe, T. Mihara, H. Yoshimori and C. A. Paz de ARAUJO, “Preparation of Ferroelectric Thin Films of Bismuth Layer Structureed Compounds”, Jpn. J. Appl. Phys., part 1, Vol.34 , (1995), p.5240
24. T. Nogughi, T. Hase and Y.Miyasaka, “Analysis of the Dependence of Ferroelectric Properties of Strontium Bismuth Tantalate(SBT) Thin Films on the Compostion and Process Temperature”, Jpn. J. Appl. Phys. Part 1, Vol.35, (1996), p.4900
25. D. J.g Yeon, J. D. Park, Y. Kwon, T. S. Oh, ”Electrical characteristics of the MOD-Derived SrBi2xTa2O9 and SrBi2.4(Ta,Nb)2O9 thin films”, J. Mat. Sci. 35, (2000), p.2405
26. I. Koiwa, K. Tani, J. Mita and T. Iwabuchi, ”Effect of Annealing Method to Crystalize on Sr0.9Bi2.3Ta2O9+α Thin Film Properties Formed from Alkoxide Solution”, Jpn. J. Appl. Phys. Vol.37, (1998), p.192
27. T.chen, T.Li, X.Zhang and s.B. desu., ”The Effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 thin films”, J. Mater. Res. 12 (1997), p.1569
28. Y. T. Kim, D. S. Shin, Y. K. Park, I.H. Choi, ” Effects of Bi-Pt alloy on electrical characteristics of Pt/SrBi2Ta2O9/CeO2 /Si ferroelectric gate structure”, J. Appl. Phys. Vol.86, No.6, (1999), p.3387
29. G.P. choi, J.H. park, C.H. lee, I.D. kim and H.G. kim, “Effect of interfacial states on electrical properties of SrBi2Ta2O9 thin films”, Jpn. J. Appl. Phys. Vol.39, (2000), p.5151
30. H. S. Choi, E. H. Kima, I.H. Choi, Y. T. Kimb,J. H. Choi, J. Y. Lee,” The effect of ZrO2 buffer layer on electrical properties in Pt/SrBi2Ta2O9 /ZrO2/Si ferroelectric gate oxide structure”, thin solid films, 388, (2001), p.226
31. Y.T. Kim, C.W. Lee, D.S. Shin and H.N. Lee ,”Effect of Insulator on Memory Window of Metal-Ferroelectric-Insulator-Semiconductor-Field Effect Transistor(MEFISFET)-Non Destructive Readout Memory Devices”, IEEE, (1998), p.35
32. H. S. Choi, Y. T. Kim, S. kim and I.H. Choi, “Effect characteristics of Pt/SrBi2Ta2O9/Ta2O5/Si using Ta2O5 as the buffer layer”, Jpn. J. Appl. Phys. Vol.40, (2001) , p.2940
33. S.B. Xiong and S. Sakai,”Memory properties of SrBi2Ta2O9 thin films prepared on SiO2 /Si substrates”, Appl. Phys. L., Vol.75, No.11, (1999) p.1613
34. B.G. Yu, W.J. Lee, C.R. Cho, C.H. Shin, B.W. Kim, “the effect of annealing temperature on electrical properties of SrBi2Ta2O9/insulator/Si(MFIS) structure for NDRO-type FRAM devices”, Cryst. Res. Technol. 34, (1999) , p.1197
35. K.J. Choi, W.C. Shin, J.H. Yang, and S.G. Yoon, “ Metal / Ferroelectric / Insulator / Semiconductor structure of Pt/SrBi2Ta2O9/YMnO3/Si using YMnO3 as the buffer layer”, Appl. Phys. L. Vol.75, No.5, p.722
36. T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike and Y. Tarui,” Preparation of SrBi2Ta2O9 Film at Low Temperatures and Fabrication of a Metal / Ferroelectric / Insulator / Semiconductor Field Effect Transistor Using Al/SrBi2Ta2O9/CeO2/Si(100) Structures”, Jpn. J. Appl. Phys. Vol.36, (1997) p.5908
37. J. D. Park, J. W. Kim, and T. S. Oh, “Characteristrics of the MFIS-FET structures processed using SBT ferroelectric thin films”, Applications of Ferroelectrics, 2000. ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Vol.2 ,(2001), p.637
38. J.P. han, X. guo, and T.P. Ma, “Memory effects of SrBi2Ta2O9 capacitance on silicon with silicon nitride buffer”, Integrated Ferroelectrics, Vol.22, (1998) , p.213
39. J.P. Han and T. P. Maa, ” SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer”, Appl. Phys. L. Vol.72, No.10, (1998), p.1185
40. K.Arita, S.Hayashio, T.Otsuki, Z.Chen, M.Lim, J.W.Bacon and C.A. Paz de Araujo, “Characterization of ferroeletric gate mos capacitors formed by mod technique for nonvolatile memory applocation”, Integrated Ferroelectrics, Vol.22, (1998) ,p.143
41. K. J. Sun,C.H. Yoon, S.G. Choi, W. Y. Kim, H.Gi, “ The low temperature processing for removal of metallic bismuth in ferroelectric SrBi2Ta2O9 thin films”, Apply Surface Science, Vol.140, 1999, p.150
42. P. Yang, L. Zheng, C. Lin,“Electrical characteristics of SrBi2Ta2O9 thin films prepared by pulsed laser deposition”, Material Letter, Vol.30, 1997, p.245
43. H. Takashi, H. Takuya, S. Satoshi, “Preparation and dielectric properties of SrBi2Ta2O9 thin films by sol—gel method”, Journal of European Ceramic Society, Vol.19, 1999, p.1497
44. J. F. Roeder, B. C. Hendrix, F. Hintermaier, D. A. Desrochers, T. H. Baum, G. Bhandari,M. Chappuis,P. C. Van Buskirk, C. Dehm, E. Fritsch, N. Nagel, H. Wendt,H. Cerva, W. Hönlein, C. Mazuré,“Ferroelectric strontium bismuth tantalate thin films deposited by metalorganic chemical vapour deposition (MOCVD)”, Journal of European Ceramic Society, Vol.19, 1999, p.1463
45. W. Di, L. Aidong, L. Huiqin, Y. Tao, L. Zhiguo, M. Naiben, ” Preparation and characterization of metalorganic decomposition-derived SrBi2Ta2O9 thin films”, Material Letter, Vol.34, 2000, p.158
46. K. Nagashima, T. Hirai, H. Koike, Y. Fujisaki and Y. Tarui, “Characteristics of metal/ferroelectric/insulator/semiconductor structure using SrBi2Ta2O9 as the ferroelectric material”, Jpn. J. Appl. Phys. Vol.35, (1996), p.L1680
47. K. Nagashima, T. Hirai, H. Koike, Y. Fujisaki and Y. Tarui, ”Effect of reducing process temperature for preparing SrBi2Ta2O9 in a metal / ferroelectric / insulator / semiconductor structure”, Jpn. J. Appl. Phys. vol.36, (1997), p.L619
48. Miller and P. J. McWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor”, J. Appl. Phys. 72(12), p.5999
49. H. N. Lee, M.H. Lim, Y. T. Kim, T.S. Kakur and S. H. Choh, “Characteristics of metal/ferroelectric/Insulator/Semiconductor Field Effect Transistors Using a Pt/SrBi2Ta2O9/Y2O3/Si Structure”, Jpn. J. Appl. Phys. Vol.37, (1998), p.1107
50. W.J. Lee, C.H. Shin, C.R. CHO, J.S. Lyu, B.W. Kim,”Electrical Properties of SrBi2Ta2O9/Insulator/Si Structures with Various Insulators”, Jpn. J. Appl. Phys. Vol.38,(1999), p.2039
51. X.H. Liu, Z.G. Liu, J.M. Liu, “Preparation and Characterization of ferroelectric SrBi2Ta2O9 thin films on Si using Al2O3 buffer layers”, Appl.Phys.A , (2000)
52. M. Lim and T.S. Kalkur, “The Role of Leakage Current on the Memory Window and Memory Retention in MFIS Structure”, Integrated Ferroelectric,Vol.22, (1998), p.205
53. K.J. Hubbard and D.G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon” J. Mater. Res., Vo.11, No.11, (1996), p.2757
54. P. Gao, L. J. Meng et al., “Influence of sputtering pressure on the structure and properties of ZrO2 films prepare by rf reactive sputtering”, Applied Surface Science, No 173, p.84, (2001)
55. P. Gao, L. J. Meng et al., “Characterisation of ZrO2 films prepare by rf reactive sputtering at different O2 concentrations in the sputtering gases”, Vacuum ,56 , p.143, (2000)
56. P. Gao, L. J. Meng et al., ”Influence of sputtering power and the substrate-target distance on the properties of ZrO2 films prepared by rf reactive sputtering”, thin solid film, 377-378, p.557, (2000)
57. J.P. Abriata, J. Garces, and R. Versaci, Bull. Alloy phase Diag.3, 28 (1982)
58. J. S. Lee, H. H. Kim, H. J. Kwon, and Y. W. Jeong ,“Texture Control and Interfacial structures of SrBi2Ta2O9 thin films on Pt”, Appl. Phys. Lett. Vol 73, No.2 ,(1998), P.166
59. H. K. Kim, S. H. Kim, S. B. Bae, I. W. Kim, ”The structure and degradation mechanism of ferroelectric SrBi2Ta2O9 thin films”, Science and Tech, Proceedings of the 4th Korea-Russia Int'l Symp on ,(2000) p.69
60. A. Li, D. Wu, H. Ling, T. Yu, “Effect of processing on the characteristics of SrBi2Ta2O9 films prepared by metalorganic decomposition” ,J. Appl. Phys. Vol 88, No.2 (2000) P.1035
61. E. Tokumitsu, R. Nakamura, H. Ishiwara, ” Fabrication of MFIS-FETs using PLZT/STO/Si(100) structures”, ISAF’96, IEEE, 1996, p.107
62. G.P. Choi, J.H. Park, C.H. Lee, I.D. Kim, H.G. Kim, ” Time dependence of electrical properties of SrBi2Ta2O9 thin films after top electrode annealing”,Material Letter 45, (2000), P.208
63. I. Koiwa, T. Kanehara, H. Kato, S. Ono, A. Sakakibara, T. Osaka, K. Asami,” Effect of H2 sintering and Pt Upper Electrode on Metallic Bi content in Sr0.9Bi2.1Ta2O9 Thin Films Ferroelectric Memories Prepared by Sol-Gel Method”, Jpn. J. Appl. Phys. Vol.37, 1998, p. 519

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文