跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/27 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高志光
研究生(外文):Chih-Kuang Kao
論文名稱:利用微波電漿化學氣相沉積法於金矽液態基材上合成鑽石之研究
論文名稱(外文):Diamond synthesis on Au-Si liquid substrate by using microwave plasma chemical vapor deposition
指導教授:張立張立引用關係
指導教授(外文):Li Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:90
中文關鍵詞:鑽石微波電漿化學氣相沉積法液態基材
外文關鍵詞:DiamondMPECVDliquid subctrateAu-Si
相關次數:
  • 被引用被引用:0
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
使用化學氣相沈積法在固態基材上合成鑽石已經有二十餘年的光景,然而在高品質的鑽石成長方面仍未有重大突破,鑽石在合成時直接影響鑽石品質的因素很多,包括電源功率、甲烷濃度、氣體流量、系統壓力、溫度及基材的表面型態等。就基材而言傳統上的選擇不外乎考慮晶格匹配性、基材缺陷、表面能及是否能與碳形成碳化物等因素,材料遍及了週期表內所能想像到的元素及化合物,然而效果並不顯著。因此,本論文研究重點著眼於基材,異於傳統上使用固態基材的方式,我們利用低溫化合物來形成液態基材在化學氣相系統下合成鑽石。
實驗選用金矽合金為基材,並控制其重量百分比約1比2,熔點約為700℃,於壓力20TORR真空腔體內,使用甲烷作碳源,氫電漿為解離甲烷的工具來合成鑽石,藉由改變偏壓大小、甲烷濃度、孕核方式、成長時間、圖案控制等參數,並使用XRD、RAMAN、TEM、SEM、EDS、ELLS等工具來分析鑽石品質及觀察鑽石在液態基材上成核及成長的機制。
實驗結果發現:
1.利用金矽液態基材來合成鑽石,可以得到品質不錯的鑽石。
2.在金矽液態基材上合成鑽石,鑽石的成核機制與在固態基材上合成鑽石有所不同,基材會形成類似鬚晶的單晶的矽,且朝311方向成長,然後鑽石會沉積在上面。
3.攏起的單晶矽與鑽石具有非常平整的界面,界面結構為氧化矽或碳化矽。
4.鑽石的尺寸與基材攏起物具有密切關係,攏起物直徑越粗則鑽石尺寸越大。
5.利用圖案的方式,同時在固態與液態的基材合成鑽石,鑽石會先在具有液態的地方成核並成長,顯示鑽石對液態基材與固態基材具有蠻高選擇比。
6.改變偏壓大小會對鑽石的成核密度造成影響,正偏壓越高成核密度用高。
7.改變成長濃度對成核密度沒有太大變化,對晶形的影響性較大,濃度越低晶形越好。

Abstract
Chemical vapor deposition of diamond films on solid state substrates has been investigated for the past two decades, but the growth of high quality or highly oriented diamond film accepted by applications has not been achieved yet. Many parameters of growth process would affect directly the quality of diamond, such as methane concentration, gas flow rate, working pressure, substrate temperature, and surface conditions of substrate. The selection of substrate materials for diamond film deposition has to consider lattice structure, surface energy, carbon solubility of the substrates, or the affinity with carbon to form carbide phase. Furthermore, elements or compounds attempted to use as substrates for diamond deposition have covered all over the periodic table, but the effect on improvement quality of diamond is not notable. Thus, in this thesis, we used a low melting point alloy as substrate for chemical vapor deposition of diamond, which was very different to the conventional solid-state substrate. The liquid-state would exist at the temperature of chemical vapor deposition and to promote the synthesis of diamond.
We used Au-Si alloy as substrate, which has the melting point about 700oC by using Au-Si weight ratio in 1:2. Diamond was synthesized by microwave assisted plasma chemical vapor deposition system, and hydrogen and methane was used as gas source. Then, we investigated the mechanism of the nucleation and growth of diamond synthesis on liquid state substrate under various bias voltage, methane concentration, and nucleation, growth duration, and patterned substrate by X-Ray Diffraction, Raman, Transmission Electron Microscopy, Scanning Electron Microcopy, Energy Dispersive Spectrometry, and Electron Energy Loss Spectrum analysis technology.
In this study, we found:
1. The high quality diamond was obtained by using Au-Si liquid substrate.
2. The mechanism of diamond nucleation on liquid substrate was different on convention solid substrate. Substrate would form protrudent single crystal silicon, in cone shapel, and each protrudent single crystal silicon oriented along [311] crystallographic direction. Then, diamond was deposited on t top of the protrudent single crystal silicon.
3. The planar interface between diamond and silicon was observed, and silicon oxide and silicon carbide was existed at the interface.
4. The size of diamond depended on the size of the protrudent Si, and the thicker protrudent would form larger-size diamond.
5. When diamond deposited on the patterned substrates, diamond shows selective nucleation on the pattern where the liquid alloy had been formed, indicating that diamond nucleation have highly selective between liquid state and solid state substrate.
6. Varying bias voltages affects the diamond nucleation density. The higher nucleation density could be formed, by increasing bias positive voltage.
7. The variation on methane concentration was not found to affect the nucleation densities; however, the shape of diamond depends on the methane concentration. The methane concentration lower than 0.3﹪would result in well-faceted diamond.

目錄
第一章 緒論 ……………………………………………………………1
第二章 文獻回顧 ………………………………………………………9
2.1化學氣相沉積法…………………………………………9
2.2成長機制…………………………………………………11
2.3偏壓輔助成核法…………………………………………12
2.4基材的影響………………………………………………14
2.5液態基材…………………………………………………15
第三章 實驗方法與設備………………………………………………24
3.1實驗流程…………………………………………………24
3.2基材的備製………………………………………………25
3.2.1晶片清洗……………………………………………25
3.2.2中間層披覆…………………………………………26
3.2.3圖案製作……………………………………………27
3.3實驗參數設計……………………………………………29
3.3.1液態基材設計………………………………………29
3.3.2偏壓輔助成核與自然成長…………………………30
3.3.3改變偏壓輔助孕核時偏壓大小……………………31
3.3.4改變成長時甲烷濃度………………………………32
3.3.5圖案限制……………………………………………33
3.4微波電漿輔助化學氣相沉積系統………………………34
3.4.1鑽石沉積……………………………………………36
3.5製程與分析設備…………………………………………37
第四章 結果與討論……………………………………………………40
4.1試片表面形態觀察與分析………………………………40
4.2製程參數的影響…………………………………………70
4.2.1偏壓大小的影響……………………………………70
4.2.2成長濃度的影響……………………………………70
4.2.3圖案的影響…………………………………………71
4.2.3參數之改進…………………………………………71
4.3綜合討論…………………………………………………82
4.3.1液態基材之探討……………………………………82
4.3.2鑽石形態之探討……………………………………82
4.3.3攏起物之探討………………………………………83
4.3.4界面之探討…………………………………………84
第五章 結論……………………………………………………………87
第六章 參考資料………………………………………………………89
表目錄
表1.1 鑽石基本性質……………………………………………………6
表1.2 鑽石的應用範圍…………………………………………………7
表2.1 低溫化學氣相沉積法之比較……………………………………9
表2.2 各種輔助鑽石的成核方法對鑽石成核密度的影響…………20
表2.3鑽石基材的分類 ………………………………………………20
表2.4過度金屬的溶碳量 ……………………………………………22
表2.5各種金屬元素隻高溫蒸氣壓 …………………………………23
圖目錄
圖1.1鑽石的單位晶胞圖………………………………………………5
圖1.2六方礦鑽石與立方鑽石的晶體結構圖…………………………5
圖1.3碳元素之皮平衡相圖……………………………………………8
圖2.1化學氣相沉積過程 ……………………………………………18
圖2.2鑽石成長機制 …………………………………………………18
圖2.3鑽石沉積在形成碳化物中間層基材上的成核機制 …………19
圖2.4偏壓輔助成核法 ………………………………………………19
圖2.5金矽合金材料共晶相圖 ………………………………………21
圖3.1中間層之披覆 …………………………………………………27
圖3.2圖案之製作 ……………………………………………………29
圖3.3微波電漿輔助化學氣相沉積系統 ……………………………36
圖3.4直流偏壓裝置 …………………………………………………36
圖4.1電漿狀況示意圖 ………………………………………………41
圖4.2試片表面狀況示意圖 …………………………………………41
圖4.3試片A區之SEM影像 …………………………………………44
圖4.4試片A區之EDS之成份分析……………………………………44
圖4.5試片B區之SEM影像 …………………………………………45
圖4.6試片B區之EDS之成份分析……………………………………45
圖4.7試片C區之SEM影像 …………………………………………46
圖4.8試片C區之EDS之成份分析……………………………………46
圖4.9正偏壓200V的XRD分析結果…………………………………47
圖4.10試片A區傾斜75度之SEM影像………………………………48
圖4.11成長濃度0.66﹪試片之TEM影像……………………………49
圖4.11成長濃度0.66﹪試片之TEM-EDS分析………………………50
圖4.12 VLS成長機制…………………………………………………51
圖4.13 自然成長方式試片之SEM影像………………………………58
圖4.14無甲烷濃度試片經加熱階段之SEM影像……………………59
圖4.15無甲烷濃度試片經加熱階段之EDS分析……………………59
圖4.16無甲烷濃度試片經偏壓階段之SEM影像……………………60
圖4.17無甲烷濃度試片經偏壓階段之EDS分析……………………60
圖4.18無甲烷濃度試片經偏壓階段之SEM影像……………………61
圖4.19無甲烷濃度試片經成長階段之EDS分析……………………61
圖4.20成長濃度0.33﹪,成長4小時之SEM影像…………………62
圖4.21成長濃度0.33﹪,成長4小時之拉曼分析…………………62
圖4.22利用碳化方式合成鑽石試片之SEM影像……………………63
圖4.23利用碳化方式合成鑽石試片之TEM影像……………………64
圖4.24碳化方式合成鑽石試片之TEM影像(二)……………………66
圖4.25TEM Zero-Loss Mapping………………………………………66
圖4.26攏起物Si mapping結果………………………………………66
圖4.27攏起物diamond mapping結果………………………………66
圖4.28碳元素與矽元素mapping結果………………………………66
圖4.29攏起物之plasmon loss peak結果…………………………67
圖4.30結晶物之plasmon loss peak結果…………………………67
圖4.31界面之plasmon loss peak結果………………………………68
圖4.32矽Core loss結果……………………………………………68
圖4.33鑽石在液態基材上成長機制…………………………………69
圖4.34偏壓+100V之SEM影像………………………………………73
圖4.35偏壓+200V之SEM影像………………………………………73
圖4.36偏壓+300V之SEM影像………………………………………73
圖4.37偏壓+100V之拉曼光譜結果…………………………………74
圖4.38偏壓+200V之拉曼光譜結果…………………………………74
圖4.39偏壓+300V之拉曼光譜結果…………………………………74
圖4.40改變偏壓大小之成核密度統計圖……………………………75
圖4.41成長濃度0.33﹪試片之SEM影像……………………………75
圖4.42成長濃度0.66﹪試片之SEM影像……………………………76
圖4.43成長濃度1﹪試片之SEM影像…………………………………76
圖4.44成長濃度3﹪試片之SEM影像…………………………………76
圖4.45成長濃度0.33﹪試片之拉曼光譜分析………………………77
圖4.46成長濃度0.66﹪試片之拉曼光譜分析………………………77
圖4.47成長濃度1﹪試片之拉曼光譜分析…………………………77
圖4.48成長濃度3﹪試片之拉曼光譜分析…………………………77
圖4.49成長濃度0.33﹪試片之XRD分析……………………………78
圖4.50成長濃度0.66﹪試片之XRD分析……………………………78
圖4.51成長濃度1﹪試片之XRD分析…………………………………78
圖4.52利用pattern方式成長15分鐘試片之SEM影像……………79
圖4.53利用pattern方式成長30分鐘試片之SEM影像……………79
圖4.54利用pattern方式成長4小時試片之SEM影像 ……………79
圖4.55成長濃度0.33﹪,成長15分鐘試片之SEM分析……………80
圖4.56成長濃度0.33﹪,成長15分鐘試片之TEM分析……………81
圖4.57攏起的單晶矽分析(一) ……………………………………85
圖4.58攏起的單晶矽分析(二) ……………………………………86

參考資料
1. M. A. Prelas, G. Popovici, L. K. Bigelow, ”Handbook of industrial diamonds and diamond films” (2000).
2. H. Liu and D. S. Dandy, “Diamond Chemical Vapor Deposition: Nucaeation and Early Growth Stages”, Noyes Publications, New Jersey, 1995.
3. Edited by A. lettington and J. W. Stwwds, “Thin Film Diamond”, Chapman & Hall for the Royal Society, London, 1994.
4. Edited by K. E. Spear and J. P. Dismukes, “Synthetic Diamond: Emerging CVD Science and Technology” , John Wiley & Sons, Inc., New York, 1994,pp.3-90, 390-393.
5. P. W. May, “Diamond thin films: a 21st-century material”, Phil. Trans. R. Soc. Lond. A (2000) 358.
6. 李文俊,「鑽石薄膜被覆之應用與展望」,金工,26卷1期,民國81年1月。
7. 鄭晃忠,「鑽石薄膜材料技術與應用」,電子月刊,第三卷第三期,1997年3月。
8. 戴明鳳,「漫談鑽石薄膜」,真空科技,六卷二期。
9. 陳培麗,「鑽石及類鑽薄膜簡介」,科儀新知,第十三卷第二期,民國80年10月。
10. 李玉華,「鑽石薄膜半導體」,物理雙月刊,第十五卷地三期,1993年。
11. Y. Gurbuz , W.P. Davidson , D.V. Kerns , “A PECVD diamond device for chemical gas sensing applications”, Diamond and Related Materials 7 1723-1726 (1998).
12. Robert D. McKeag , Richard B. Jackman , “Diamond UV photodetectors: sensitivity and speed for visible blind application”, Diamond and Related Materials 7 513-518 (1998).
13. A. Deneuville, “Electronic properties, devices and applications of diamond thin films”, C. R. Acad. Sci. Paris, t. 1, Sĕrie IV (2000).
14. Reproduced with permission from Ref. 3,Amercan Chemical Society, 1989.
15. H. Liander, ASEA Jl, 28:97-98(1955).
16. F. P. Bundy, H. T. Hall,H. M. Strong, R. H. Wentorf ,Man-made diamond, Nature, 176:51(1995).
17. 蔡大祥,「化學氣相沉積法」
18. W. J. Zhang, X. Jang, Y. B. Xia, “The selective etching with H+ ions and its effect on oriented growth of diamond films”, J. Appl. Phys. Vol. 82.4, (1998)
19. N. Ishigaki, S. Yugo, “Mechanism of diamond epitaxial growth on silicon”,Dia. and Rel. Materials, 1646-1649, (2000)
20. E. Vittone, C. Manfredotti, “thermoluminescence in CVD diamond films: application to radiation dosimetry”, Dia. and Rel. Materials, 1234-1239, (1999).
21. T.C.S. Vandevelde, K.Vandierendonck, “Cutting application of DLC, hard carbon and diamond films”, Sur. and Coating Technology 113,80-85,(1999).
22. J. Singh, “Nucleation and growth mechanism of diamond during hot-filament chemical vapor deposition, J. Mater. Sci, 29(10),2761-276,(1994).
23. A. R. Badzian, T. Badzian, Surf. Coat. Technol, 36:283-293(1988)
24. H. Kawarada, T. Suesada, “Heteroepitaxial growth of smooth and continuous diamond thin films on silicon substrates via high quality silicon carbide buffer laers”, Appl. Phys. Lett.66(5),30,(1995).
25. M. M. Waite, S. L. Shah, “X-ray photoelectron spectroscopy of initial stages of nucleation and growth of diamond thin films during plasma assisted chemical vapor deposition”, Appl. Phys. Lett.60(26),2344-2346,(1992).
26. R. Michau, M. S. Wong, K. C. Sheng, Appl. Phys. Lett.,54(22),2204-2206,(1989).
27. S. Yugo, T. Kani, T. Kimura, T. Muto, “generation of diamond nuclei by electron fielf in plasma chemical vapor deposition”, Appl. Phys. Lett.58(10), 1036-1038,(1991) .
28. 陳懋榮,「以微波電漿化學氣相沈積法在二矽化鈷基材上成長鑽石之研究」,國立交通大學材料科學與工程系,碩士論文,民國89年。
29. P. Reinke, P. Kania, P. oelhafen, “Investigation of the nucleation mechanism in bias-enhanced diamond deposition on silicon and molybdenum”, Thin solid Films,124-129,(1995).
30. R. Haubner, A. Lindlbauer, B. Lux, “Diamond nucleation and growth on refractory metals using microwave plasma deposition”,J. of Refractory Metals &Hard Meterials 14,119-125,(1996).
31. C. M. Sung, M. F. Tai, “Reactivites of transition metals with carbon: implications to the mechanism of diamond sythesis under high pressure”, J. of Refractory Metals &Hard Meterials 15,237-265,(1997).
32. R. Roy, H. S. Dewan, “precipitation of diamond from metallic liquids below 1 atm”, Materials Lett., 25,191-193,(1995).
33. R. Roy, K. A. Cherian, “precipitation of diamond from MexCyHz solution at 1 ATM”,Mat. Res. Innovat,1,117-129,(1997).
34. H. K. Chung, M . S. Wong, “liquid phase synthesis of diamond in hydrogen atmophere”, Materials Chemistry and Phycics,72,191-195,(2001).
35. P. H. Fang, L. Hou, “Rheotaxial diamond growth by chemical vapor deposition”, Mat. Res. Innovat,3,360-364,(2000).
36. J. Han, D. Jeon ,Y. Ku,, “(surface crystalline gold silicide formation on the Au(100)surface”, Surface Science,376,237-274,(1997).
37. W. Kalss, R. Haubner, B. Lux, “Diamond deposition on noble metals”,Dia. Rel. Matreials,6,240-246,(1997) .
38. Y. Wakayama, S. I. Tanaka, “Self-assembled naoncompsoite structure of Si-Au sustem formed by liquid phase epitaxy”,J. Crystal Growth,181,304-307,(1997).
39. D. M. Bird, L. J. Clarke, ”First principles calculation of the structure and energy of Si (113)”, Physical Review Letter, Volume 69, Number 26,(1992)
40. Y. N. Yang, E. D. Williams, ”The role of carbon in the faceting of slilcon on the (111) to (001) azimuth”, J. Vac. Sci. Technol, A8(3),2481-2488,(1990).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top