跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳良科
研究生(外文):Liang-Ko Wu
論文名稱:偏壓效應對奈米碳管的成長與特性之影響
論文名稱(外文):Bias effect on the growth and properties of carbon nanotubes
指導教授:陳家富陳家富引用關係
指導教授(外文):Chia-Fu Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:92
中文關鍵詞:偏壓效應奈米碳管化學氣相沈積法
外文關鍵詞:bias effectcarbon nanotubeCVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以偏壓輔助微波電漿化學氣相沈積法(Microwave plasma enhanced chemical vapor deposition)成長奈米碳管。探討比較加偏壓對CH4/H2及CH4/CO2兩種反應氣體在奈米碳管的成長以及特性之影響。
結果顯示,以鐵和鈀當催化劑,在CH4/H2反應氣體中皆能長出緻密碳管;然而以CH4/CO2當反應氣體時,以本實驗所設定條件之下,只有鈀能成長出碳管,而以鐵為催化劑只能形成過多缺陷以及不純相摻雜一起的碳膜,不易形成單相碳管。偏壓效應對於碳管的外貌有重大的影響,當施以負偏壓時,負偏壓愈大,碳管管徑隨之增加,反之,當施以正偏壓時,正偏壓愈大,碳管管徑隨之減少。然而無論施以正負偏壓,碳管膜厚並無明顯變化。由TEM分析可知,以鈀當催化劑易成長出魚骨狀結構之碳管,以鐵當催化劑易成長竹節狀結構之碳管,且兩者都為中空多層的石墨結構。利用CH4/CO2當反應氣體,因為能夠提供較多碳源,以致於碳管成長速率(約為4.8μm/min.)比CH4/H2當反應氣體時(約為1.7μm/min.)快。以鐵當催化劑所成長的碳管,由於具有方向性及較小管徑,因此相較於以鈀當催化劑所形成碳管具有較低起始電場以及較高電流。由於施以偏壓能有效改變碳管的管徑,同時利用正偏壓所得較小的管徑在電子場發射應用上具有較佳的性質,如較低起始電場、高電壓下有較高電流。

In this study, two reactive gases :CH4/H2 and CH4/CO2 are used to grow carbon nanotubes(CNTs) in bias assisted microwave plasma chemical vapor deposition (BAMPCVD) system. The bias effect on the growth and properties of carbon nanotubes is reported.
As a result, the high density carbon nanotubes could be synthesized by using CH4-H2 gas mixtures on both Pd and Fe catalysts. In CH4-CO2 gas systems, dense CNTs were also found in Pd Catalyst. However, CNTs with more defects and impurities were grown on Fe catalyst. It was found that the diameter and the quality of CNTs are obviously controlled by the applied bias voltage. Our results show that the diameter of CNTs can be decreased to 45 nm without any amorphous carbon on the surface under +120 V. In addition, carbon nanotubes grown under positive bias possess better field emission characteristics than under negative one. This results from the following reasons (I) smaller diameter and (II) pure surface structure.
From the TEM results, the fish-bone like carbon nanotubes are often grown on Pd catalyst; and the bamboo-like carbon nanotubes are usually found on Fe catalyst. Both two different kinds of carbon nanotubes are made of graphite with hollow and multi-wall structure. Due to higher carbon concentration in CH4-CO2 gas systems, the growth rate of carbon nanotubes (~4.8μm/min.) is faster than using CH4-H2 gas mixtures ( ~1.7μm/min.).

第一章 緒論……………………………………………………………1
1.1引言…………………………………………………………1
1.2實驗動機……………………………………………………2
第二章 文獻回顧……………………………………………….…….3
2.1 奈米碳管的結構……………………………………….……3
2.2 合成奈米碳管、碳纖的方法…………..…………….…..…5
2.2.1 電弧放電法(Arc Discharge)……......……………5
2.2.2 雷射剝削法(Laser ablation)…………......…….6
2.2.3 觸媒式化學氣相沈積法……............………......…...7
2.3 拉曼散射(Raman scattering)分析…………………...……...9
2.4 場發射原理………………………………………………..13
2.5 奈米碳管應用…………………………...………………...15
2.5.1電子場發射源………………………….…….……....16
2.5.2複合材料的強化材……………………….…….……22
2.5.3能量儲存材料………………………………….…….22
2.5.3.1 鋰離子的陰極材料………………………….22
2.5.3.2 儲氫材料...............................23
2.5.3.3 超級電容器(Supercapacitors).........................24
2.5.4原子力顯微鏡……………………..………….……..24
第三章 實驗步驟與方法....……………………………………………26
3.1 實驗流程…………………….…………………………….26
3.2 實驗參數……………………..……………………………29
3.3 奈米碳管特性分析..………………………………………30
3.3.1 奈米碳管表面型態分析……………………………30
3.3.2奈米碳管微結構及組織分析………….….……..….30
3.3.3拉曼特性分析……………………..…..…………….30
3.3.4 I-V特性分析…………………………….………….31
第四章 結果與討論……………………………………………………33
4.1 CH4/H2系氣體源之碳管合成....……………....…………...33
4.1.1SEM觀察……………………..…………….………..33
4.1.2 TEM分析…………………..………………….…….43
4.1.3 拉曼光譜分析………………..……………………..50
4.1.4 I-V量測 ………….................................56
4.2 CH4/CO2系氣體源之碳管合成……………..……………..58
4.2.1 SEM觀察………..…………………….……….……..58
4.2.2 TEM分析……………………………………..………58
4.2.3 拉曼光譜 ……………………………………………70
4.2.4 I-V量測 ……………………………………………70
4.3氣源的影響……………………………………….……..…75
4.4氮氣的影響………………………………………..…….…78
第五章 結論…………………………………………………..………..86
參考文獻………………………………………………………………..87

1.H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature, 1985, 318, 162.
2. W.Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature, 1990, 347, 354.
3. R. C. Haddon, et al., Nature, 1991, 350, 320.
4. A. Oberlin, M. Endo, T. Koyama, Carbon, 1976, 14, 133.
5.R. Saito, M. Fujita, G. Dresselhaus M. S. Dresselhaus, Appl. Phys. Lett., 1992, 60, 2204.
6.D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993)
7.J. Lu, Carbon Nanotubes — The Material for the new Millennium, in The International Conference on Novel Formation Mechanisms and Physical Properties of Nanostructures, Hsinchu, Taiwan, December 12-20, 1998.
8.A.G. Rinzler,J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269 (1995) 1550.
9.J.M. Bonard, J.P. Salvetat, T. Stochli, W.A. de Heer, L. Forro, A. Chatelain, Appl.Phys. Lett. 73 (1998) 918 .
10.W. A. de Heer, A. Chatelain, D. Ugarte, Science 270 (1995)
11.Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, EW. Seelig, R.P.H. Chang, Appl. Phys. Lett. 72 (1998) 2912 .
12.S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.Jdai, Science 283 (1999) 512 .
13.L. Nilsson, O, Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach., H. Kind, J.-M. Bonard, K. Kern, Appl. Phys. Lett. 76 (2000) 2071
14. C. F. Chen, S. H. Chan, H. W. Ko, S. E. Hsu, “Low temperature growth of diamond films by microwave chemical vapor deposition using CH4 + CO2 gas mixtures”, Diamond Relat. mater., 3, 443. (1994).
15. C. F. Chen, S. H. Chen, T. M. Hong, D. P. Wang, “Low-temperature diamond growth and plasma species analysis using methane-carbon dioxide gas mixtures”, Scripta Metall., 31, 755. (1994)
16.C. F. Chen, S. H. Chen, T. M. Hong, J. S. Leu, “Optical characterization of diamond synthesized using CH4-CO2 gas mixtures without supplying hydrogen gas”, Thin Solid Films, 253, 162. (1994)
17. C. F. Chen, S. H. Chen, K. M. Ling, H. W. Ko, “Electrical properties of diamond films grown at low temperature”, Thin Solid Films grown at low temperature; Thin Solid Films 270, 205, (1995)
18. T. M. Hong, S. H. Chen, Y. S. Chiou, C. F. Chen, “Optical emission spectroscopy studies of the effects of nitrogen addition on diamond synthesis in a CH4-CO2 gas mixtures”, Appl. Phys. Lett, 67, 2149.
19.http://ipewww.epfl.ch/gr_buttet/Manips/Nanotubes/NTbasics1.htm#Electronic properties
20. R. Saito, G. Dresselhaus, M. S. Dresselhaus, “Physical Properties of Carbon Nanotubes”, Imperial College Press, London, 1998.
21. M. Kanai, et al., Appl. Phys. Lett. 79, 2967 (2001)
22.W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Appl. Phys. Lett., 1999, 75, 873.
23.S. Iijima, Nature, 1991, 354, 56.
24. Morinubo Endo, et al.,“Carbon nanotubes”. Oxford , N.Y. 1996:
25.A.thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. fisher, and R. E. Smalley, Science 273, 483 (1996)
26.M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Nature (Lonton) 388, 52 (1997)
27.Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105 (1998)
28.W. Z. Li, S. S. Xie, L. X. Qain, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G, Wang, Science 274, 1701 (1996)
29.S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science 283, 512 (1999)
30.M. Ge, et al.,”Scanning Tunneling Microscopy of Single-Shell Nanotube of Carbon ”, Appl. Phys. Lett., Vol. 65, No.18, pp.2284-2286,1994.
31.T. W. Odom, J. L. Huang, P. Kim, “Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes”, Nature, Vol.391, pp.62-64, 1998.
32.J. W. G. Wildoer, et al., “Electronic Structure of Atomically Resolved Carbon Nanotubes” , Nature , Vol.391, pp59-62, 1998.
33.汪建民, 材料分析, 初版, 中國材料學會, 新竹, 民87。
34.工業技術研究院‧資訊中心 ITRI,2001
35.C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, “ High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes”, Appl. Phys. Lett. 70 (11), 1480 (1997)
36.H. Schmid and Hans-Werner Fink,“ Carbon Nanotubes are Coherent Electron Sources”, Appl. Phys. Lett. 70 (20), 2679 (1997)
37. K. A. Dean, B. R. Chalamala, Appl. Phys. Lett., 1999, 75, 3017
38.W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett., 1999, 75, 3129
39.B. R. Chalamala, Y. Wei, B. Gnade, IEEE Spectr., 1998, 42.
40.W. Zhu, Carbon nanotubes: An Industrial Perspective, in Defense Science & Technology Seminar on Emerging Technologies, Arlington, VA, March 19, 1999.
41.D. Temple, Mat. Sci. Eng. R, 1999, 24, 185.
42.M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature, 1996, 381, 678.
43.M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks Jr, S. Washburn, R. Superfine, Nature, 1997, 389, 582.
44.D. A. Walters, L. M. Ericson. M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, R.E. Smalley, Appl. Phys. Lett., 1999, 74, 3803.
45.T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, J. Mater. Res., 1998, 13, 2445.
46.L. S. Schadler, S. C. Giannaris, P. M. Ajayan, Appl. Phys. Lett., 1998, 73, 3842.
47.B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Chem. Phys. Lett., 1999,307,153.
48.D. Cox, S. T. Picraux, Applications: Energy and Chemicals Industries, in Nanotechnology Research Directions: IWGN Workshop Report Vision for Nanotechnology Resaerch and Development in the Next Decade, WTEC, Loyola College, Maryland, Spetember 1999.
49.A. C. Dillon, K. M. Jones, T, A. Bekkedahl, C. H. Kiang, D. S. Bethuune, M. J. Heben, Nature, 1997 ,386, 377.
50.P. Chen, X. Wu, J. Lin, K. L. Tan, Science, 1999, 285, 9.
51.C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett.,1997, 70, 1480.
52.G.Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Nature, 1998,393, 346.
53. 陳朝榮,呂錦華,彭國勝, 「計量型原子力顯微鏡簡介」, 量測資訊, 第80期, 2001 工研院量測中心。
54.S.S. Wong, J. D. Harper. P. T. Lansbury Jr., C. M. Lieber, J. Am. Chem. Soc., 1998, 120, 603.
55.S. S. Wong, A. T. Woolley, E. Joselevich, C. L. Cheung, C. M. Lieber, J. Am. Chem. Soc., 1998, 120, 8557.
56. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Nature, 1998, 394, 52.
57.J. K. Campbell, L. Sun, R. M. Crooks, J. Am. Chem. Soc., 1999, 121, 3779.
58.H. Dai, N. Franklin, J. Han, Appl. Phys. Lett., 1998, 73, 1508.
59. Alan M, “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers”, Nature, vol.395, pp-878∼881, 1998.
60.Z.W.Pan et al., “Direct growth of aligned open carbon nanotubes by chemical vapor deposition”, Chem.phys.lett, vol.299, pp-97∼102, 1999.
61.Alan M et al., “Chemical vapor deposition of methane for single-walled carbon nanotubes”, Chem. phys. lett. vol.292 , pp-567∼574, 1998.
62.Xianbao Wang, et al. "Bamboo-like carbon nanotubes produced by pyrolysis of iron(II) phthalocyanine", Carbon 39 (2001) 1533.
63.P. M. Ajayan, T. W. Ebbesen, Rep. Prog. Phys. 1997, 60, 1025
64.F. Tuinstra, J. L. Koeing, J. Chem. Phys. 1970, 53, 1126
65.G. Vitali, M. Rossi, M. L. Terranova, and V. Sessa, J. Appl. Phys. 77 (1995)4307.
66.D. G. McCulloch, S. Prawer, and A. Hoffman, Phys. Rev. B 50 (1994)5905.
67.V. Barbarossa, F. Galluzzi, R. Tomaciello, and A. Zanobi, Chem. Phys. Lett. 185 (1991)53.
68.S.Yugo, T.Kanai, T.Kimura and T.Muto, Appl. Phys. Lett, 58(1991)1036
69.C. F. Chen, T, M. Hong, S. H. Chen, J. Appl. Phys. 74, (1993) 4483
70.L. P. Biro, et,al. Mat. Sci. Eng. C 19(2002)3
71.H. Terrones, et al., Phys. Rev. Lett. 84 (2000)1716.
72. http://www.idic.gov.tw/html/list7-03.html
73. http://www.chemedu.ch.ntu.edu.tw/lecture/battery/introduce.htm

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top