跳到主要內容

臺灣博碩士論文加值系統

(54.91.62.236) 您好!臺灣時間:2022/01/18 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧昶鳴
研究生(外文):Chang Ming Lu
論文名稱:藉由晶圓接合和雷射剝離技術的搭配將氮化鎵薄膜整合在銅或矽基板上
論文名稱(外文):Integration of GaN Thin Film with Cu or Si Substrate by Wafer Bonding and Laser Lift-off
指導教授:吳耀銓
指導教授(外文):Yewchung Sermon Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:93
中文關鍵詞:晶圓接合雷射剝離基板氮化鎵發光二極體氮化鎵薄膜轉移銅基板熱應力和壓應力
外文關鍵詞:Wafer BondingLaser Lift-offGaN LEDGaN film transferCopper substrateThermal and pressure stress
相關次數:
  • 被引用被引用:4
  • 點閱點閱:440
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於缺乏大面積的氮化鎵基板,氮化鎵必須用異質磊晶的方式成長在其它基板上,而目前以藍寶石為最常被使用的基板。不過藍寶石基板在導電性質和導熱性質上是較差的,這對於氮化鎵發光元件之製作與表現給於諸多的難處和限制。幸運的是,透過晶圓接合與雷射剝離基板技術的搭配,可以把氮化鎵薄膜轉移到導電性質和導熱性質較佳的銅基板或矽基板上。
然而在雷射剝離基板的製程中,因應而生的熱應力和壓應力卻成為這個技術最大的挑戰。在研究中發現影響薄膜轉移的均勻性和完整性,最大的關鍵在於氮化鎵薄膜與轉移基板的接合界面上。因此先透過對於晶圓接合的研究,瞭解接合界面的接合機制對於雷射剝離製程的影響,並研究適當的接合技術使氮化鎵薄膜與轉移基板可以均勻而高強度的接合在一起。目前在我們的研究上已經可以很成功的將氮化鎵薄膜均勻而完整的轉移到銅基板上。如此便可以製作上下電極的發光二極體元件,讓氮化鎵發光二極體的製作簡化、並增加發光面積、解決電流散開、使電性和發光效率都有明顯的助益。此外可以用這個技術發展為以銅為基板的氮化鎵雷射二極體、場發射電晶體和異直接面雙極性電晶體,如此可以解決氮化鎵高功率元件散熱的問題,使元件的特性和表現更好。
Due to the lack of a bulk large area GaN substrate, GaN films are growth on other substrates by heteroeptaxial method. And up to now, sapphire is the most used growth substrate. However, sapphire is poor in electrical and thermal conductivity. This could make GaN-based optoelectronic devices difficult and restrict in fabrication and performance. Fortunately, we can transfer GaN films on other substrate that good in electrical and thermal conductivity such as copper or silicon substrate by wafer bonding and laser lift-off technology.
However, large thermal and pressure stress would be a big problem during laser lift-off substrate process. In our study, the most influence in films transfer uniform and complete was the interface between GaN film and transfer substrate. So in our experimental will study wafer bonding technology to understand bonded mechanism and to make GaN films bond with transfer substrate uniformly and very strongly. Now, in our study can transfer GaN films on copper substrate very uniformly and completely. In this way, we can fabricate vertical GaN light emitted diode. And we can simplify the light emitted diode fabricate processes, add luminescence area, solve current spreading problem, improve electrical performance, and can get better luminescence efficiency. In addition, we can develop this technique in LD、FET、HBT with copper substrates. In this way we can solve heat sink problem in high power device and would be more useful and excellence in performance.
第一章 序論
1.1前言…………………………………………………………………1
1.2研究方法與展望……………………………………………………7
第二章 文獻回顧與理論背景研究
2.1晶圓接合技術………………………………………………………11
2.1.1簡介晶圓接合…………………………………………………11
2.1.2晶圓接合研究…………………………………………………12
2.1.2.1晶圓接合技術的優點……………………………………12
2.1.2.2晶圓接合的鍵合種類……………………………………13
2.1.3晶圓接合程序注意事項………………………………………15
2.1.3.1晶片表面平坦度對於晶圓接合的重要性………………15
2.1.3.2污染物和微粒對於晶圓接合的影響……………………17
2.1.3.3均勻而持續壓力的給於…………………………………18
2.1.3.4接合溫度的取捨…………………………………………20
2.2雷射剝離技術………………………………………………………22
2.2.1簡介雷射剝離技術…………………………………………22
2.2.2雷射與氮化鎵交互作用的熱分析…………………………23
2.2.3氮化鎵的雷射蝕刻和藍寶石的剝離………………………26
第三章 實驗結果與討論
3.1晶圓接合和雷射剝離基板技術整合流程…………………………29
3.2晶圓接合的設計……………………………………………………32
3-2-1利用矽化鈀的產生造成晶圓接合……………………………33
3-2-2鈀/矽與鈀/矽的晶圓接合研究………………………………33
3-2-3氮化鎵接合在矽晶圓的設計…………………………………43
3-2-4模擬基板代替氮化鎵接合在矽晶圓的研究…………………47
3-2-4-1鈀/鈦/二氧化矽/矽與矽基板的接合……………………47
3-2-4-2鈀/鈦/二氧化矽/矽與鈀/矽的接合……………………49
3-2-5藉由鈀金屬的相互擴散造成晶圓接合………………………51
3.3整合晶圓接合與雷射剝離基板技術的運用………………………56
3.3.1雷射剝離基板機台的架設……………………………………56
3.3.2無基板之氮化鎵發光二極體元件的製作……………………57
3.3.3氮化鎵發光二極體元件從藍寶石轉移到銅基板上…………63
3.4將轉移後的氮化鎵薄膜製作成發光元件…………………………66
3.4.1氮化鎵薄膜轉移到矽晶圓上的研究…………………………67
3.4.1轉移到銅基板上的氮化鎵薄膜其元件的製作………………69
第四章 結論和為來工作
第五章 參考資料
1. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M.
Burns, J. Appl. Phys. 76, 1363 (1994).
2. S. Nakamura, T. Mukai, M. Senoh, Appl, Phys. Lett. 64, 1689
(1994).
3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.
Mat-sushita, Y.Sugimoto, and H. Kiyodo, Appl, Phys. Lett.
70, 868 (1996).
4. J.M. VanHove, R. Hickman, J.J. Klaassen, P.P. Chow, P.P.
Ruden, Appl. Phys. Lett. 70, 282 (1997).
5. T.P. Chow, R. Tyagi, IEEE Trans. Electron. Dev. 41 1481
(1994).
6. Z.Z. Bandic, P.M. Bridger, E.C. Piquette, T.C. McGill, R.P.
Vaudo, V.M. Phanse, J.M. Redwing, Appl. Phys. Lett. 74 1266
(1998).
7. Z.A. Munir, and A.W. Searcy, J. Chem. Phys. 42, 4233 (1965).
8. N. Newman, J. Ross, and M. Rubin, Appl. Phys. Lett. 62, 1242
(1993).
9. S.D. Lester, F.A. Ponce, M.G. Craford, and D.A. Steigerwald,
Appl. Phys. Lett. 66, 1249 (1996).
10. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys.
Lett. 48, 353 (1986).
11. S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
12. A. Sakai, H. Sunakawa, and A. Usui, Jpn. J. Appl. Phys.
Lett., Part 2 36, L899 (1997).
13. Akira Sakai, Harua Sunakawa, and Akira Usui, Appl. Phys.
Lett. 71, 2259 (1997).
14. H. Amano M. Kito, K. Hiramatsu, and I Akasaki, Jpn. J.
Appl. Phys. 28, L2112 (1989).
15. S. Nakamura, M Senoh, T. Mukai, Jpn. J. Appl. Phys. 30,
L1708 (1991).
16. A.T. Ping, Q. Chen, J.W. Yang, M.A. Khan, I. Adesida, IEEE
Electron Device Letters 19, 54 (1998).
17. W.S. Wong, T. Sands, and N.W. Cheung, Appl. Phys. Lett. 72,
599 (1998).
18. W.S. Wong, J. Krüger, Y. Cho, B.P. Linder, E.R. Weber,
N.W. Cheung, and T. Sands, Proceedings of the Symposium on
LED for Optoelectronic Applications andthe 28th State of
the Art Programs on Compound Semiconductors 98-2, 377
(1998).
19. P. Abraham, A. Black, A. Karim, J. Piprek, Y. J. Chiu, B.
Liu, A. Shakouri, S. Mathis, E. Hu, and J. Bowers, ECS
Meeting Abtracts, MA 99-2.1023 (1999)
20. W. P. Maszara, JES, 138, no. 1. 341 (1991)
21. E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez,
J. P. Harbison, Appl. Phys. Lett. 56, 11 (1990)
22. Q.Y. Tong, E. Schmidt, U. M. Gösele, and M. Reiche.
Appl. Phys. Lett. 64. 625 (1994)
23. T. Chung, N. Hosoda, T. Suga, Appl. Phys. Lett. 72. 13.
1265 (1990)
24. Q.Y. Tong, and U. Gosles, JES. vol. 143. no. 4. 1297 (1995)
25. J. Yang, H. Kahn. S. M. Phillips, and A. Heuer. ECS Meeting
Abtracts, vol. MA 99-2. 999 (1999)
26. R. Venkatasubramanian, M. L. Timmons, Appl. Phys. Lett. 60.
7.(1992)
27. M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, J. Appl.
Phys. 60. 2987 (1986)
28. R. Stengl, K. Mitani, V. Lehmann, and U. Gosele, Pro. IEEE
SOI/SOI technol. Conf, 123 (1989)
29. R. Stengl, T. Tan, and U. Gosele, J. J. Appl. Phys. 28.
1735 (1989)
30. H. Baumgart, R. D. Pinder, E. F. Steigmeier, H. Auderset,
and A.J. R. de Kock, Proc. IEEE SOI/SOI technol. Conf, 95
(1989)
31. M. K. Weldon, Y. J. Chabal, D. R. Hamann, S. B. Christman,
E. E. Chaban, L. C. Feldman, J. Vac. Sci. Technol. B14,
p.3095 (1996)
32. J. Haisma, G.A.C.M Spierings, U.K.B. Biermann, and J.A.
Pals, Jpn. J. Appl. Phys. 28, 1426 (1989).
33. T. Detchprohm, H. Amano, K. Hiramatsu, and I. Akasaki, J.
Cryst. Growth 128, 384 (1993).
34. M.K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M.
Stutzmann, Phys. Stat. Sol. (A) 159, R3 (1997).
35. J.M. Poate, James W. Mayer, editors, Laser Annealing of
Semiconductors, Academic Press, New York, p. 54 (1982).
36. J. Dziewior, and W. Schmid, Appl. Phys. Lett. 31, (1977).
37. C.J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M.
Razeghi, J. Appl. Phys. 76, 236 (1994).
38. M.E. Lin, B.N. Sverdlov, and H Morkoç, Appl. Phys.
Lett. 63, 3625 (1993).
39. P. Baeri, G. Foti, J.M. Poate, and A.G. Cullis, Phys. Rev.
Lett. 45, 2036 (1980).
40. Martin Von Allmen and Andreas Blastter, Laser-Beam
Interactions with Materials, Physical Principles and
Applications (Second Edition), pp 44-48, Springer-Verlag,
Berlin (1995).
41. F.P. Incropera, and D.P. De Witt, Fundementals of Heat and
Mass Transfer, 2nd Edition (John Wiley&Sons, New York,
1985), pp. 43-47.
42. W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour,
P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett.
77, 2822 (2000)
43. M. Funato, S. Fujita, and S. Fujita, Appl. Phys. Lett. 77,
3959 (2000)
44. W. S. Wong, M. Kneissl, P. Mei, David W. Treat, M. Teepe
and N. M. Johnson, Appl. Phys. Lett. 78, 1198 (2001)
45. W. S. Wong, P. Mei, David W. Treat, M. Teepe and N. M.
Johnson, Jpn. J. Appl. Phys. 39, 1203 (2000)
46. J. F. Chen, and L. J. Chen, Mater. Chem. Phys. 39, 229.
(1995)
47. S. Yoshida, N. Yamamoto, T. Nagamura, M. Oyama, and S.
Okazaki, Surf. Sci. 393, L84. (1997)
48. J. F. Chen, and L. J. Chen, Thin Solid Film 261, pp107.
(1995)
49. B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac,
H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud and M.
Bruel, Elect. Letters 35, pp1024 (1999)
50. L. A. Clevenger and C. V. Thompson, J. Appl. Phys. 67, 1325
( 1990)
51. L. A. Clevenger, C. V. Thompson, and K. N. Tu, ibid.
63,2894 (1990)
52. K. R. Coffey, L. A. Clevenger, K. Barmak, D. A. Rudmon, and
C. V. Thompson, Appl. Phys. Lett. 55, 852 (1989)
53. Hadis Morkoc“Nitride Semiconductors and Devices”p196-197.
54. A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, I. Adesida,
IEEE Electron Device Letters 19, 54 (1998)
55. J. Dumont, E. Monroy, E. Munoz, R. Caudano, R. Sporken,
Journal of crystal growth 230 558-563 (2001)
56. C. Chen-Fu, C. C. Yu, Y. K. Wang, J. Y. Tsai, F. I. Lai,
and S. C. Wang 77 3423 (2000)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top