跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/23 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳雲驥
研究生(外文):Yun-Chi Wu
論文名稱:氧離子佈植應用在氮化鎵高電子遷移率電晶體隔離技術之探討
論文名稱(外文):The Study of Oxygen Ion Implantation Isolation for GaN HEMTs
指導教授:張翼張翼引用關係馮明憲馮明憲引用關係
指導教授(外文):Dr.Edward Y. ChangM. S. Feng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:氧離子佈植氮化鎵高電子遷移率電晶體隔離
外文關鍵詞:implantationGaNHEMTisolation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:489
  • 評分評分:
  • 下載下載:128
  • 收藏至我的研究室書目清單書目收藏:0
本實驗的目的在於應用離子佈植隔離技術於氮化鎵高電子遷移率電晶體 (HEMTs) 之製作。離子佈植隔離技術的優點在於可發展出平坦化製程,可解決平台蝕刻隔離技術所造成蝕刻深度和形狀的問題,本研究使用氧離子佈植,在實驗中找出最佳之佈植條件及退火條件以達到最佳之元件隔絕效果。本研究是以元件間之漏電流來決定其隔絕效果。文中詳述了各個製程步驟的技術及直流特性,並研究離子佈植隔離之特性。
本實驗製作之AlGaN/GaN HEMT的閘極長度為0.3μm,閘極寬度為125μm,其直流特性具有40.1mA/mm的飽和電流密度,傳導率 (transconductance) 為39.36 mS/mm,截止電壓 (pinch-off voltage) 為-1.2 V,閘極-汲極間的崩潰電壓為84V。在使用氧離子佈植技術隔離後,元件間的漏電流為352 nA,具有很高的隔離效果。在Si3N4保護層覆蓋後,元件直流特性為30.6 mA/mm的飽和電流密度,傳導率 (transconductance) 為37.3 mS/mm,閘極-汲極崩潰電壓則昇為115V。
最後並討論經過不同退火溫度,對氧離子佈植隔絕效果之影響。同時並利用拉曼,ESCA及DCXRD 量測,觀察經過不同退火條件下,離子佈植對氮化鎵材料內部結構和鍵結之變化,以闡釋所觀察到的電性改變。

GaN-based electron devices have received much attention owing to their ability to operate at a high power level and in a high temperature environment. The GaN high electron mobility transistor (HEMT) has been developed for high frequency and high power application for power amplifiers in wireless communication. This experiment focuses on the application of ion implantation isolation technique for GaN HEMT fabrication. Device isolation serves a number of purposes. In active devices, it restricts the current flow to the desired path and electrically isolates separate devices from each other. It also reduces parasitic resistances and capacitance. Device isolation by ion implantation been widely used in III-V compounds. Implantation isolation is a planar process and has the advantages of easy control in dosage and energy, and can avoid the undercut problems using mesa etch technique. In this study, oxygen ion implantation for isolation was investigated, implantation dosage, energy and annealing conditions were experimented to achieve the optimum isolation effect between devices. The leakage current between devices was used to determine the isolation effect after implantation and annealing. Detailed process steps were described and the electrical characteristics of the devices after ion implantation isolation were also presented in this thesis.
The gate length and gate width of the AlGaN/GaN HEMTs in this experiment were 0.3μm and 125μm, respectively. The energy and dosage of oxygen ion implantation were 150KeV and 5x1013cm-2 for device isolation. The devices exhibited the saturated drain current density of 40.1 mA/mm and the transconductance of 39.4 mS/mm. The pinch-off voltage was —1.2 V and the gate-to-drain breakdown voltage was 84 V. After oxygen ion implantation isolation, the leakage current between devices was 352 nA which is low enough for device isolation. After Si3N4 passivation, the devices exhibited the saturated drain current of 30.6 mA/mm and the transconductance of 37.3 mS/mm. The gate-to-drain breakdown voltage was 115 V.
Finally, the influences of annealing temperature on the oxygen ion implantation isolation were studied, and Raman spectra, ESCA, and DCXRD analysis were used to explain the composition and bonding changes of the oxygen implanted GaN material after different annealing temperatures.

Chapter 1 Introduction
1.1 III-V Nitrides for Device Applications 1
1.2 High electron mobility transistors 4
Chapter 2 Semiconductor Processing: Theory And Background Information
2.1 Ion Implantation 6
2.1.1 Ion Stopping and Damage Introduction 6
2.1.2 Implant Isolation and Doping 10
2.2 Metal/Semiconductor Contacts 13
2.2.1 Schottky Contact 13
2.2.2 Ohmic Contact 16
Chapter 3 Device Structure and Fabrication
3.1 Device structure 20
3.2 Device fabrication 20
3.2.1 Wafer cleaning 20
3.2.2 Ohmic contact formation 21
3.2.3 Implantation isolation 21
3.2.4 Gate recess 22
3.2.5 Gate formation 23
3.2.6 Device passivation 23
3.3 Material analysis for implantation 24
Chapter 4 Results and discussion
4.1 Basic characteristics of the Ohmic and Schottky metals 25
4.1.1 Ohmic contact 25
4.1.2 Schottky contact 26
4.1.3 T-Shaped gate formation 26
4.2 DC Characterization of the devices 26
4.2.1 The measurement of ohmic contacts 26
4.2.2 Isolation between devices 27
4.2.3 Gate recess 27
4.2.4 DC characteristics of the device 28
4.2.5 DC Characteristics after passivation 28
4.3 Material analysis for implanted GaN after thermal treatment 29
4.3.1 Electrical measurement 29
4.3.2 The Raman spectra analysis 30
4.3.3 The ESCA (XPS) analysis 31
4.3.4 The DCXRD analysis 32
Chapter 5 Conclusion 33
Reference 36
Table 39
Figure 40

S.J. Pearton, F. Ren, A.P.Zhang, K.P. Lee, Materials Science and Engineering, R30 p.55 (2000)
M. Micovic, N.X. Nguyen, P. Janke, W.-S. Wong, P. Hashimoto, L.-M. McCray and C. Nguyen, Electronics Letters Vol.36 No.4 p.358, 2000
O. Breitschadel, H. Grabeldinger, B. Kuhn, F. Scholz, W. Walthes, M. Berroth, I. Daumiller, K.B. Schad, E. Kohn, H. Schweizer. Electronics Letters Vol.35 No.23 p.2018, 1999
S.C. Binari, L.B. Rowland, W. Kruppa, G. Kelner, K. Doverspike and D.K. Gaskill, Electronics Letters Vol.30, No.15 p.1248, 1994
M.Asif Khan, J.N.Kuznia, and D.T.Olson, Appl. Phys. Lett 65 (9) p.1121, 1994.
M.Asif Khan, Q. Chen, C. J. Sun, J. W. Yang, M. Blasingame, M.S. Shur and H. Park, Appl. Phys. Lett. 68 (4) p.514, 1996
Xian-An Cao, “Advanced Processing of GaN for Novel Electronic Devices”, 2000.
Ralph Williams, “Modern GaAs Processing Methods”
J.C. Zolper, R. G. Wilson, S. J. Pearton and R. A. Stall, Appl. Phys. Lett, 68 (14) p.1945, 1996
A.Y. Polyakov, A.S. Usikov, B. Theys, N.B. Smirnov, A.V. Govorkov, F, Jomard, N.M. Shmidt, W.V. Lundin, Solid-State Electronics, 44 p.1971 (2000)
M. Misra, A.V. Sampath, and T.D.Moustakas, Appl. Phys. Lett, Vol.76 No.8 p.1045, 2000
W. Kruppa, S.C. Binari and K. Doverspike, Electronics Letters, Vol.31 No.22 p.1951, 1995
S.J. pearton, C.B. Vartuli, J.C. Zolper, C. Tuan and R.A. Stall, Appl. Phys. Lett, 67 (10) p.1435, 1995
S.C. Binari, L.B. Rowland, W. Kruppa, G. Kelner, K. Doverspike and D.K. Gaskill, Electronics Letters, Vol.30 No.15 p.1248, 1994
G. Hanington, Y.M. Hsin, Q.Z. Liu, P.M. Asbeck, S.S. Lau, M. Asif Khan, J.W. Yang and Q. Chen, Electronics Letters, Vol.34 No.2 p.193, 1998
V. Kumar, W. Lu, F.A. Khan, R. Schwindt, E. Piner, and I. Adesida, Electronics Letters, Vol.37 No.24 p.1483, 2001
C. Youtsey, I. Adesida, G. Bulman, Appl. Phys. Lett, 71 (15) p.2151, 1997
A.T. Ping, D. Selvanathan, C. Youtsey, E. Piner, J. Redwing and I. Adesida, Electronics Letters, Vol.35 No.24 p.2140, 1999
M.S. Minsky, M. White, E.L. Hu, Appl. Phys. Lett, 68 (11) p.1531, 1996
M. Akita, S. Kishimoto, K. Maezawa and T. Mizutani, Electronics Letters, Vol.36 No.20 p.1736, 2000
A.T. Ping, E. Piner, J. Redwing, M. Asif Khan and I. Adesida, Electronics Letters, Vol.36 No.2 p.175, 2000
V. Kumar, W. Lu, R. Schwindt, J. Van Hove, P. Chow and I. Adesida, Electronics Letters, Vol.37 No.13 p.1476, 2001
M. Marso, M. Wolter, P. Javorka, A, Fox and P. Kordos, Electronics Letters, Vol.37 No.24 p.1476, 2001
Jong-Soo Lee, A. Vescan, A. Wieszt, R. Dietrich, H. Leier and Young-Se Kwon, Electronics Letters, Vol.37 No.2 p.130, 2001
G. Hanington, Y.M. Hsin, Q.Z. Liu, P.M. Asbeck, S.S. Lau, M. Asif Khan, J.W. Yang and Q. Chen, Electronics Letters, Vol.34 No.2 p.193, 1998
S.O. Kucheyev, J.S. Williams and S.J. Pearton, Materials Science and Engineering, 33 p.51 (2001)
W. Limmer, W. Ritter, R. Sauer, B. Mensching, C. Liu, and B. Rauschenbach, Appl. Phys. Lett, 72 (20) p.2589, 1998
M. Giehler, M. Ramsteiner, P. Waltereit, O. Brandt, K.H. Ploog, H. Obloh, Physica B p.162 (2002)
S.D. Wolter, B.P. Luther, D.L. Waltemyer, C. Onneby, S.E. Mohney and R.J. Molnar, Appl. Phys. Lett, 70 (16) p.2156, 1997
Ji-Myon Lee, Ki-Myung Chang, Seong-Ju Park and Hong-Kyu Jang, Journal of the Korean Physical Society, Vol.37 No.6 p.842, 2000
K. Yuan, K. Radhakrishnan, H.Q.Zheng, Q.D.Zhuang, and G.I. Ing, Thin Solid Films, 391 p.36 (2001)
C. Liu, A. Wenzel, K. Volz, and B. Rauschenbach, Nuclear Instruments and Methods in Physics Reserch B 148 p.396 (1999)
Yong Suk Cho, Eui Kwan Koh, Young Ju Park, Dongwan Koh, Eun Kyu Kim, Youngboo Moon, Shi-Jong Leem, Gyeungho Kim, and Dongjin Byun, Journal of Crystal Growth, 236 p.538 (2002)
C. Liu, A. Wenzel, H. Riechert, and B. Rauschenbach, IEEE p.881, 1999

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top