跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊雄
研究生(外文):Jun-Xiong Chen
論文名稱:晶界可調變電性之鈦酸鍶鈣材料研究
論文名稱(外文):Adjustable physical characterizations and grain-boundary controllable properties in (Sr,Ca)TiO3
指導教授:陳三元陳三元引用關係
指導教授(外文):San-Yuan Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:95
中文關鍵詞:二階段燒結電容器變阻器電阻器雷射驅入鈦酸鍶鈣
外文關鍵詞:two-step sinteringcapccitorvaristorresistorlaser drive instrontium calcium titanate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
鈦酸鍶鈣[(Sr0.9Ca0.1)TiO3/SCT]塊材與薄膜皆可利用二階段式燒結控制其晶粒成長,此外藉是否由晶界驅入Li-Mn,可以SCT製作出電阻、電容及變阻器等具不同特性的被動元件。其中比起傳統式燒結所得SCT塊材,經由二階段式燒結[T1=1350/0m、T2=1230/20h]所得SCT塊材,不但晶粒大小(<10 μm)分佈均勻且密度更近似理論密度外,更是ρ<1 Ω˙cm之半導化基板,另外利用均溫處理將Li-Mn驅入SCT晶界後,可以製作出SCT塊材電容與變阻器等元件。SCT薄膜以旋鍍之方式鍍膜於經研磨、拋光後SCT塊材基板上,SCT薄膜表面微結構與燒結氣氛有很大的關係,其中在H2-N2的燒結氣氛下SCT薄膜表面並無明顯的晶界存在,而CO-CO2的燒結氣氛卻可使在SCT表面上的晶粒分佈均勻,相同的,二階段退火的熱處理則可SCT薄膜表面晶粒不再成長;利用調整激光雷射擇區驅入的條件,可以得到電阻在5~200 kΩ範圍之可調式SCT薄膜電阻、電容值在2~3 nF (介電損失約15~20 %) 之SCT薄膜電容、以及非線性係數在4~7 (崩潰電壓約為7~9 V)之SCT變阻器。

A two-step sintering process has been investigated in order to control the grain growth of strontium calcium titanate [(Sr0.9Ca0.1)TiO3/SCT]. Using furnance to drive Li-Mn into SCT grain boundary, various passive components including resistors, capacitors, and varistors can be obtained. For SCT bulk material, uniform grain size (<10 μm), high density, and ρ<1 Ω•CM can be achieved after two-step sintering [T1=1350/0min、T2=1230/20h]. Furthermore, SCT capacitors and varistors can be fabricated after Li-Mn elements were driven into grain boundary. On the other hand, the SCT thin films were deposited on polished SCT bulk substrate by spin coating. It was observed that the microstructure of SCT thin films was dependent on the annealing atmosphere. Under H2-N2 atmosphere, the grain boundary can not be clearly discerned on SCT film surface. In contrast, the grain size was uniform under CO-CO2 atmosphere by two-step annealing process. The SCT films with the resistances of 5-200 kΩ, the capacitances of 2-3 nF (dielectric loss15-20 %), and the nonlinear coefficient of 4-7 (breakdown voltage 7-9 V) for varistors can be controlled by changing the laser driving conditions.

目 錄
中文摘要................................................. i
英文摘要.................................................ii
致謝....................................................iii
目錄.....................................................iv
圖目錄..................................................vii
表目錄..................................................xii
第一章 緒論.............................................1
1.1前言...........................................1
1.2研究動機與目的.................................2
第二章 文獻回顧.........................................3
2.1基礎理論.......................................3
2.1.1晶界障壁層電容器原理.....................3
2.1.2電阻原理.................................4
2.1.3變阻器原理...............................5
2.2文獻回顧.......................................6
2.2.1二階段燒結...............................6
2.2.2添加物對燒結的影響.......................7
2.2.3 drive in.................................9
2.2.4電性....................................10
第三章 實驗步驟與方法.................................12
3.1半導化基板的製備..............................12
3.1.1實驗步驟................................12
3.1.2 試片性質量測...........................14
3.2半導化薄膜的製備..............................16
3.2.1實驗步驟................................16
3.2.2試片性質量測............................17
3.3 drive in......................................17
3.3.1實驗步驟................................17
3.3.2試片性質量測及雷射參數..................18
第四章 實驗結果........................................20
4.1半導化基板的製備..............................20
4.1.1 Ti/(Sr+Ca) ratio對塊材微結構、密度的影響.20
4.1.2不同處理條件粉末之二階段式燒結..........21
4.2半導化薄膜的製備..............................23
4.2.1不同氣氛對薄膜的影響....................23
4.2.2二階段退火對薄膜於CO/CO2還原氣氛的影響..24
4.3 drive in......................................25
4.3.1不同晶粒大小之半導化基板drive in........25
4.3.2薄膜之均溫drive in......................27
4.3.3薄膜之激光雷射drive in..................28
第五章 研究討論........................................30
5.1二階段式燒結..................................30
5.2 drive in......................................32
5.2.1不同晶粒大小之半導化基板drive in........32
5.2.2薄膜之均溫drive in......................32
5.2.3薄膜之激光雷射drive in..................33
第六章 結論............................................34
參考文獻................................................35
圖目錄
圖2-1 GBBLCs之(a).結構模型 (b).簡化之兩相模型
(c).等效電路.......................................42
圖2-2 SrTiO3之導電率與氧分壓關係圖.......................43
圖2-3 變阻器典型電場強度對電流密度關係圖.................44
圖3-1 研究架構...........................................45
圖3-2粉末配製流程圖.....................................46
圖3-3 薄膜前驅液配製流程圖...............................48
圖3-4 KrF laser system裝置圖.............................49
圖4-1 Ti/(Sr+Ca) ratio=(a).0.98、(b).1.00、(c).1.02、(d).1.04 於1450oC燒結1h之SEM照片...........................50
圖4-2 Ti/(Sr+Ca) ratio=(a).0.98、(b).1.00、(c).1.02、(d).1.04於1450oC燒結1h之XRD繞射圖.........................51
圖4-3 Ti/(Sr+Ca) ratio對密度之變化.......................51
圖4-4 Ti/(Sr+Ca) ratio對grain size之變化................52
圖4-5 Ti/(Sr+Ca) ratio對電阻率之變化.....................52
圖4-6 Ti/(Sr+Ca)=1.00於不同溫度下之XRD繞射圖............53
圖4-7 Ti/(Sr+Ca)=1.00於不同溫度下之電阻率................53
圖4-8 不同溫度下grain size與密度關係圖.................53
圖4-9 粉末成分A、B、C之grain size對密度關係圖..........54
圖4-10 粉末成分A、D、E之grain size對密度關係圖..........55
圖4-11 粉末成分A、B、C、D、E之grain size對密度關係圖.....55
圖4-12 成分(a).A、(b).B、(c).C、(d).D、(e).E於T2=1230oC/20h及T2=1180oC/30h之SEM照片..........................56
圖4-13 傳統式燒結grain size對密度關係圖:1450oC/1h.......59
圖4-14 二階段式燒結grain size對密度關係圖:
T1=1350oC/0m T2=1180oC/30h..........................59
圖4-15 薄膜於Si基板不同溫度下退火30min..................60
圖4-16 薄膜於SCT基板不同溫度下10H2-90N2氣氛退火5min.....61
圖4-17 薄膜於SCT基板不同溫度下CO/CO2氣氛退火5min........62
圖4-18 薄膜於CO/CO2氣氛不同溫度下退火2h之XRD繞射圖.....63
圖4-19 SrO-TiO2之相圖....................................64
圖4-20 薄膜二階段退火之SEM照片(a).SCT-1、(b).SCT-2、(c).SCT-3、(d).SCT-4、(e).SCT-5.....................66
圖4-21 SCT-4之縱剖面SEM照片.............................69
圖4-22 G.S.=70μm之塊材drive in後不同gap間距時capacitance 與dielectric loss之關係...........................70
圖4-23 G.S.=70μm之塊材drive in後不同溫度下gap=1.0mm時capacitance與dielectric loss之關係................70
圖4-24 G.S.=7μm之塊材drive in後不同gap間距時capacitance 與dielectric loss之關係...........................71
圖4-25 G.S.=7μm之塊材 drive in後不同溫度下gap=1.0mm時capacitance與dielectric loss之關係................71
圖4-26 G.S.=7/70μm之塊材drive in後不同溫度下gap=1.0mm時capacitance與dielectric loss之關係................72
圖4-27 G.S.=7/70μm之塊材1050oC下drive in後不同gap間距之breakdown voltage.................................72
圖4-28 G.S.=7/70μm之塊材1200oC下drive in後不同gap間距之breakdown voltage.................................73
圖4-29 G.S.=70μm、gap=1.0mm時不同溫度drive in後之breakdown voltage與α關係..................................73
圖4-30 G.S.=7μm、gap=1.0mm時不同溫度drive in後之breakdown voltage與α關係..................................74
圖4-31 G.S.=70μm於(a).1050oC(b).1200 oC下drive in
之I-V圖..........................................75
圖4-32 G.S.=7μm於(a).1050oC(b).1200 oC下
drive in之I-V圖...................................76
圖4-33 薄膜1000oC下drive in gap=1.0mm之capacitance與dielectric loss...................................77
圖4-34 薄膜1000oC下drive ingap=1.0mm
之voltage與α關係................................77
圖4-35 薄膜於1000oC下drive in (a).5min、(b).15min、(c).30min、(d).60min之I-V圖.......................78
圖4-36 雷射drive in於50mJ下電容與介電損失之關係.........80
圖4-37 雷射drive in於50mJ下崩潰電壓
與非線性係數之關係................................80
圖4-38 雷射於50mJ功率下scan(a).1 (b).5 (c).10 (d).30次後之I-V圖..........................................81
圖4-39 雷射於50mJ功率下scan(a).1 (b).5 (c).10 (d).30次SEM 照片..............................................83
圖4-40 雷射於不同功率下scan60次後之電阻值...............85
圖4-41 laser power(a).50 (b).110 (c).160 (d).260 (e).320mJ scan60次後之SEM..................................86
圖5-1 (a)A、(b)B、(c)C、(d)D、(e)E各成分於1450oC下燒結1h之SEM圖片........................................89
圖5-2 G.S.=5μm之塊材於1050oC下drive in 1h
之SIMS縱深分析....................................92
圖5-3 G.S.=70μm塊材1200oC drive in 1h後之(a).SEM (b).沿(a).中線段之Mn line scan分析...........................93
圖5-4 G.S.=7μm塊材1200oC drive in 1h後之(a).SEM (b).沿(a).中線段之Mn line scan分析...........................94
圖5-5 薄膜於1000oC下drive in (a).30min (b).60min之SIMS縱深分析.............................................95
表目錄
表3-1 各粉末之編號、處理條件以及平均粒徑大................47
表4-1 薄膜於CO/CO2還原氣氛下退火之試片編號、退火條件以及片 電阻值.............................................65

1.H.D. Park and D.A. Payne, “Characterization of internal boundary layer capacitors” ,pp.242-253 in Advances in Ceramics. Vol.I. edited by L.M.
2.Jacob Klerk and Peter J.H. Sanders, “SrTiO3 boundary layer capacitors:influence of additives and stoichiometry”, pp.282-289 in Advances in Ceramics. Vol.I. edited by L.M.
3.P.E.C. Franken, M.P.A. Viegers and A.P. Gehring, “Microstructure of SrTiO3 boundary-layer capccitor material”, J.Am.Ceram.Soc.64[12],687
4.Y. Zhiwen and X. Baomin, “One-step,low-temperature sintering of SrTiO3 based grain boundary barrier layer capacitor materials”, IEEE
5.M. Fujimoto and W.David Kingery, “Microstructure of SrTiO3 internal boundary layer capacitors during and after processing and resultant electrical properties” J.Am.Ceram.Soc.68[4],169
6.S. Shibagaki and A. Koga, “Calcium-doping effect on temperature coefficients of dielectric constants in SrTiO3 capacitors”, J.Mater.Sci.32(1997),1449
7.R. Wernicke, “Two-layer model explaining the properties of SrTiO3 boundary layer capacitors”, pp.272-282 in Advances in Ceramics. Vol.I. edited by L.M.
8.N. Yamaoka and T. Matsui, “Properties of SrTiO3-based boundary layer capacitors”, pp.232-241 in Advances in Ceramics. Vol.I. edited by L.M.
9.R. Wernicke, “Formation of second-phase layers in SrTiO3 boundary layer capacitors”, pp.261-271 in Advances in Ceramics. Vol.I. edited by L.M.
10.P.T. Lai, Bin Li and G.Q. Li, “Thin-film ntc resistorbased in SrNbxTi1-xO3”, IEEE
11.C. Ohly, S. Hoffmann-Eifert, K. Szot, R. Waser, “Electrical conductivity and segregation effects of doped SrTiO3 thin films”, J. Euro.Ceram.Soc.21(2001),1673
12. J.H. Lee, R. Mohammedali, J.H. Han, V. Balu, S. Gopalan, C.H. Wong,J.C. Lee, “The niobium doping effects on resistance degradation of strontium titanate thin capacitors”, A.P.L., 75[10](1999), 1455
13.L. Jianying, L. Shengtao, L. Fuyi, “SrTiO3 capacitor-varistor ceramics exhibiting surface effect”, IEEE
14.S.H. Kim, H.W. Seon, H.T. Kim, J.G. Park, Y. Kim, J.D. Byun, “Effect of MnO addition on the electrical properties of Nb-doped SrTiO3 varistor”, Mater. Sci.Eng B,56(1999), 12
15.D. Kaino, J. Funayama, N. Yamaka, “Electrical properties of a (Sr,Ca)TiO3 base ceramic varistor”, proceedings of the 5th meeting on ferroelectric materials and their applications,Kyoto 1985,J.J.Appl.Phys. 24(1985)supplement 24-3, 120
16.M. Fujimoto, Y.M. Chiang, A. Roshko, “Microstructure and electrical properties of sodium-diffused and potassium-diffused SrTiO3 barrier-layer capacitors exhibiting varistor behavior”, J.Am.Ceram.Soc.68[11], C-300
17.G. Goodman, “Capacitors based on ceramic grain boundary barrier layers-a review, pp.215-231 in Advances in Ceramics. Vol.I. edited by L.M.
18. 邱榮照, “添加劑對鈦酸鍶變阻器的影響“, 清華大學, 碩士論文 1990
19.D.R. Clarke, “Varistor”, J.Am.Ceram.Soc.82[3], 485
20.R.M. German, “Sintering theory and practice”, published by wiley-interscience (1996)
21.C. Bae, J.G. Park, Y.H. Kim, “Abnormal grain growth of niobium-doped strontium titanate ceramics”, J.Am.Ceram.Soc.81[]11, 3005
22.D.F.K. Hennings, “Control of liquid-phase-enhanced discontinuous grain growth in barium titanate”, J.Am.Ceram.Soc.70[1], 23
23.G.H. Jonker, “Some aspects of semiconducting barium titanate”, Solid-State Electron 7,895 (1964)
24.H.I.K. Komeya, A. Tsuge, “Synthesis of silicon nitride powder from silica reduction”, J.Am.Ceram.Soc.65[12]C-205
25.S.H. Hong, D.Y. Kim, “Effect of liquid content on the abnormal grain growth of alumina”, J.Am.Ceram.Soc.84[7], 1597
26.L.A. Xue, “Additives and the control of grain growth in barium titanate ceramics”, Ph.D. Thesis, university of Leeds, U.K. (1987)
27.Y.S. Yoo, H. Kim, D.Y. Kim, “Effect of SiO2 and TiO2 addition on the exaggerated grain growth of BaTiO3”, J.Eur.Ceram.Soc.,17,805 (1997)
28.C.J. Peng,Y.M. Chiang, “Grain growth in donor-doped SrTiO3”, J.Mater.Res., 5[6](1990), 1237
29.I.W. Chen, X.H. Wang, “Sintering dense nanocrystalline ceramics without final-stage grain growth”, nature., 404[9](2000), 168
30.I.W. Chen, ”Grain Boundary Kinetics in Oxide Ceramics with the Cubic Fluorite Crystal Structure and its Derivatives”, interface science 8[2-3], 147
31.P. Duran, F. Capel, J. Tartaj, C. Moure, “A strategic two-stage low-temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors”, Advanced materials 14[2], 137
32.S. Witek and D.M. Smyth, “Variability of the Sr/Ti ratio in SrTiO3”, J.Am.Ceram.Soc.67[5], 372
33.Q. Cao, S. Cai, X. Zhou, S. Niu, “Effect of dopants and Ti/Sr ratio on the properties of SrTiO3 electroceramic components”, IEEE
34.N.H. Chan,R.K. Sharma, D.M. Smyth, “Nonstoichiometry in SrTiO3”, J.Electrochem.Soc., 128[8], 1762
35.U.Balachandran, N.G. Eror, “On the defect structure of strontium titanate with excess SrO”, J.Mater.Sci.,17[7], 2133
36.S.G. Cho, “Evolution of the microstructure of undoped and Nb-doped SrTiO3”, J.Mater.Sci. 29(1994), 4866
37.N.Wilcox, “Investagation of grain boundary segregation in acceptor and donor doped strontium titanate”, Solid State Ionics 75(1995), 127
38.V. Ravikumar, “An investigation of acceptor-doped grain boundary in SrTiO3”, J.PHYS.D:Apl.Phys., 29(1996), 1799
39.Y.M. Chiang and T. Takagi, “Grain-boundary chemistry of barium titanate and strontium titanate:I,high-temperature equilibrium space charge”, J.Am.Ceram.Soc.73[]11
, 3278
40.S. Gopalan, C.H. Wong, V. Balu, J.H. Lee, J.H. Han, R. Mohammedali, J.C. Lee, “Effect of niobium doping on the microstructure and dielectrical properties of strontium titanate thin films for semiconductor memory application”, A.P.L., 75[14](1999), 2123
41.A. Tsuzuki, K. Kato, K. Kusumoto, Y. Torii, “Sr/Ti ratio dependence of the dielectric properties of SrTiO3 thin films prepared by sol-gel method”, J.Mater.Sci.Lett., 16 (1997), 1652
42. 施劭儒, “添加銀、靶及銀鈀合金對鈦酸鋇性質之影響“, 台灣大學, 碩士論文 2000
43.J.C. Wurst and J.A. Nelson, “Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics”, J.Am.Ceram.Soc.,55[2],109

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top