跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 17:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:駱伯遠
研究生(外文):Po Yuan Lo
論文名稱:利用觸媒離子植入法與電子迴旋共振化學氣相沉積法合成碳奈米管
論文名稱(外文):Syntheses of carbon nanotube by catalyst ion implantation and ECR-CVD
指導教授:郭正次
指導教授(外文):Cheng Tzu Kuo
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:106
中文關鍵詞:碳奈米管離子植入電子迴旋共振觸媒化學氣相沉積
外文關鍵詞:carbon nanotube(CNT)ion implantationelectron cyclotron resonance (ECR)catalystchemical vapor deposition (CVD)carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文報導以離子植入與物理氣相沉積法將鈷、鎳金屬處理為觸媒, 再使用電子迴旋振化學氣相沉積法來控制碳奈米管的成長。 金屬觸媒分別以兩種氫電漿濃度為前處理。 濃的氫電漿會誘發較多的觸媒與積材鍵結, 並且經X-ray證明其形成矽化鈷晶體。 碳奈米管的成長機構控制於矽化鈷晶體而; 而矽化鈷晶體隨植入時間的長短與氫電漿濃度所影響而變化。 觸媒植入法有效減少非晶質碳的生成、並增加碳奈米管空管的大小、改變碳奈米管管數密度。 這些形貌的改變有以下的性質變化:Base-growth碳奈米管可以減少因為金屬觸媒殘留在Tip-growth 尖端的阻礙效應; 部份的碳奈米管是埋在基材內部, 被基材夾著, 因此增加了碳奈米管與矽基材的附著性; 較多的矽化物形成會降低缺陷的 ID/IG 比率。 另一特點是在試片傾倒45度電漿方向後, 可以使試片在電子迴旋振化學氣相沉積法中的碳米管沉積溫度降低到480℃。

This thesis reports ion implantation and PVD coating method; Co and Ni catalysts; and ECR-CVD used to manipulate the growth of CNTs. The catalysts were subjected two different H plasma pretreatment. Higher H plasma can enhance more bonding between implanted-cobalt and silicon substrate to form cobalt silicide crystal, which are provided by X-ray. The growth mechanisms of CNTs from tip-growth to base-growth also can be manipulated by cobalt silicide formation (control by implantation time and H concentration); more silicide formation often give rise to CNTs with lower ID/IG ratio. Effect of catalyst implantation can decrease a-C film formation on the specimen substrate, increase the hollow size and change the tube number density of CNTs. This morphology different was conformed to electric and mechanical properties change. As below: The base growth CNTs decreases the catalysts blocking effect on the tips of tip-growth CNTs and the implanted-catalyst-assist-CNTs are essentially embedded below the substrate surface, clipped by the surrounding Si walls and increase the adhesion property between CNTs and Si walls. It is interesting to note, the lower CNTs deposition temperature as 480℃ in ECR-CVD can be fabricated, as the specimen inclined on 45∘block with plasma direction.

Chinese abstract............................................Ⅰ
English abstract............................................Ⅱ
Acknowledgements............................................Ⅲ
Contents....................................................Ⅳ
List of symbols.............................................Ⅶ
Table captions..............................................Ⅸ
Figure captions.............................................Ⅹ
Chapter 1 Introduction:
1-1 Introduction to carbon nanotubes (CNTs).................1
1-2Introduction to ion implantation.........................2
1-3 Motivation of this research.............................3
Chapter 2 Literature reviews
2-1 Structures and properties of CNTs..............5
2-2 Synthesis methods of CNTs
2-2-1 Arc-discharge method................6
2-2-2 Laser vaporization method...........7
2-2-3 Chemical vapor deposition methods...8
2-3 Growth mechanisms of CNTs
2-3-1 Catalyst-assisted tip-growth CNTs
2-3-1-1 Temperature gradient
mechanism...............9
2-3-1-2 Yarmulke mechanisms.....10
2-3-1-3 Unsatisfied carbon valance
mechanism11.............11
2-3-2 Catalyst-assisted base-growth CNTs..11
2-3-3 CNTs using no catalysts.............12
2-4 Applications of CNTs
2-4-1 Field emitter..............12
2-4-2 Hydrogen storage...........13
2-4-3 Electron transistors.......14
2-4-4 Composite materials........15
2-4-5 Scanning probe tips........15
2-6 Ion implantation processes.....................15
2-7 Applications of ion implantation...............17
2-8 Applications of ion implantation for syntheses of
CNTs...........................................18
2-9 Structure and property analysis techniques of CNTs
2-9-1 Morphology, microstructure and lattice
image of CNTs.......................18
2-9-2 Crystal and bonding structures of CNTs
2-9-2-1 Electron diffraction.....19
2-9-2-2 Raman spectroscopy.......19
2-9-2-3 X-ray diffraction........20
2-9-3 Electrical and thermal properties of
CNTs
2-9-3-1Field emission............20
2-9-3-2 TGA and QMS..............21
Chapter 3 Experimental
3-1 Flow chart.....................................22
3-2 ECR-CVD system.................................23
3-3 Ion implantation system........................24
3-4 Raw materials..................................24
3-5 Catalyst applications by Ion implantation and PVD
processes......................................25
3-6 Hydrogen plasma pretreatment...................26
3-7 CNTs deposition procedures.....................26
3-8 Analysis methods
3-8-1 Morphology, microstructure and lattice
image examinations..................27
3-8-2 Crystal and bonding structures
analyses............................27
3-8-3 Depth profile analyses and adhesion.27
3-8-4 Surface resistance and field emission
measurements........................28
Chapter 4 Results and discussion
4-1 Effect of catalyst application methods on CNTs
growth.........................................29
4-2 Effects of implantation dosage on growth of CNTs
...............................................30
4-3 Effects of ion implantation on CNTs adhesion with
the substrate..................................32
4-4 Growth mechanisms of the implantation-assisted
CNTs...........................................33
4-5 HRTEM images and XRD...........................34
4-6 Field emission properties of CNTs..............35
4-7 Effects of specimen orientation on growth of
CNTs...........................................36
Chapter 5 Conclusions.......................................37
Chapter 6 Prospective.......................................38
References..................................................39
Tables......................................................44
Figures.....................................................49

1.Andrews, R., D. Jacques, A. M. Rao, T. Rantell, and F.
Derbyshire, Y. Chem, J. Chen, and R. C. Haddon, “Nanotube
composite carbon fibers”, Appl. Phys. Lett. 75, 9 (1999)
1329-1331.
2.Bai, X. D., Dingyong Zhong, G. Y. Zhang, X. C. Ma, Shuang
Liu, and E. G.Wang, Yan Chen and David T. Shaw, “Hydrogen
storage in carbon nitride nanobells” ,Appl. Phys. Lett. 79,
10 (2001), pp.1552-1554
3.Bethune, D. S., C. H. Kiang, M. S. de Vries, G. Gorman, R.
Savory, J. Vazquez and R. Beyers, “Cobalt-catalysed growth
of carbon nanotubes with single-atomic-layer walls”, Nautre
363, 17 (1993) 605-607.
4.Bonnot, A. M., M. N. Semeria, J. H. Boronat, T. Fournier and
L. Pontonnier, “Investigation of the growth mechanism and
electron emission properties of carbon nanostructures
prepared by hot-filament chemical vapour deposition”,
Diamond and related materials 9 (2000) 852-855.
5.Bower, Chirs., Wei Zhu and Sungho Jin and Otto Zhou, “Plasma-
induced alignment of carbon nanotubes” ,Appl. Phys. Lett.
77, 6 (2000) 830-832.
6.Bower, Chirs., Otto Zhou, and Wei Zhu, D. F. Wender, and
Sungho Jin, “Nucleation and growth of carbon nanotubes by
microwave plasma chemical vapor deposition”, Appl. Phys.
Lett. 77, 17 (2000) 2767-2769.
7.Bower, Chirs, W. Zhu, S. Jin, and O. Zhou, “Plasma-induced
alignment of carbon nanotuves”, Appl. Phys. Lett. 77 (2000)
830-832.
8.Carey, J. D., R. D. Forrest, R. U. A. Khan and S. R. P.
Silvam, “Influence of SP2 clusters on the field emission
properties of amorphous carbon thin films”, Appl. Phys.
Lett., 77, 13 (2000) 2006-2008.
9.Carey, J. D., R. D. Forrest, and S. R. P. Silvam, “Origin of
electric field enhancement in field emission from amorphous
carbon thin films”, Appl. Phys. Lett., 78, 16 (2001),
pp.2339-2341
10.Chen, K. H., J-J. Wu, L. C. Chen, C. Y. Wen, P. D.
Kichambare, F. G. Tarntair, P. F. Kuo, S. W. Chang and Y. F.
Chen, “Comparative studies on field emission properties of
carbon-based materials”, Diamond Relat. Mater. 9 (2000) 1249-
1256.
11.Chen, Y., and David T. Shaw, X. D. Bai and E. G. Wang, C.
Lund, W. M. Lu and D. D. L. Chung, “Hydrogen storage in
aligned carbon nanotubes”, Appl. Phys. Lett., 78, 15 (2001)
2128-2130.
12.Clemmow, P. C. in “electrodynamics of particles and
plasma”, 228 (Redwood City, CA./Addison-Wesley/c1990)
13.Collins, P. G., A. Zettl, Hiroshi Bando, Angreas Thess and
R. E. Smalley, “Nanotube Nanodevice”, Science 278, 3(1998)
100-103.
14.Czerwosz, E., and P. Dluzewski, “From fullerenes to carbon
nanotubes by Ni catalysis”, Diamond and related materials, 9
(2000) 901-905.
15.Dai, Hongjie, Andrew G. Rinzler, Pasha Nikolaev, Andreas
Thess, Daniel T. Colbert and Richard E. Smalley, “Single-
wall nanotubes produced by metal-catalyzed disproportionation
of carbon monoxide”, Chemical Physics Letter 260 (1996) 471-
475.
16.Dekempeneer E. H. A., J. J. M. Ottenheim and D. W. E.
Vandenhoudt, “Optimum implantation conditions for ion beam
synthesis of buried cobalt silicide layers in si(100)”,
Appl. Phys. Lett., 58 (1991) 467-469.
17.Dekempeneer E. H. A., J. J. M. Ottenheim, P. C. Zalm, C. W.
T. Bulle-Lieuwma, D. E. W. Vandenhoudt, and E. P. Naburgh,
“Thin buried cobalt silicide layers in si(100) by channeled
implantations”, Appl. Phys. Lett., 58 (1991) 2102-2104.
18.Diehl, M. R., Diehl, Sophia N. Yaliraki, Robert A. Beckman,
Mauricio Barahona, and James R. Heath, “Self-Assembled,
Deterministic Carbon Nanotube Wiring Networks”, Angew. Chem.
Int. Ed., 41 (2002) 353-356.
19.Dillon, A. C., K. M. Jones, T. A. Bekkedahl, C. H. Klang, D.
S. Bethune and M. J. Heben, “Storage of hydrogen in single-
walled carbon nanotubes”, Nature, 386, 27 (1997) 377-379.
20.Ebbesen, T. W. and T. Takada, “Large-scale synthesis of
carbon nanotubes”, Nature, 358 (1992) 220-222.
21.Ebbesen, T. W., in “Carbon Nanotube preparation and
properties”, 54-59 (CRC, Boca Raton, FL, 1996).
22.Ebbesen, T. W., in “Carbon Nanotube preparation and
properties”, 180-181 (CRC, Boca Raton, FL, 1996).
23.Ebbesen, T. W., in “Carbon Nanotube preparation and
properties”, 229-230 (CRC, Boca Raton, FL, 1996).
24.Geohegan, D. B., H. Schittenheim, X. Fan, and S. J.
Pennycook, A. A. Puretzky, M. A. Guillorn, D. A. Blom and D.
C. Joy, “Condensed phase growth of single-wall carbon
nanotubes from laser annealed nanoparticulates”, Appl. Phys.
Lett., 78 (2001) 3307-3309.
25.Guo, T., P. Nikolaev, A. Thess, D. T. Colbert, R. E.
Smalley, “Catalytic growth of single-walled nanotubes by
laser vaporization”, Chemical physical Letters, 243 (1995)
49~54.
26.Hosomi, T., Tetsuro Maki and Takeshi Kobayashi, “Enhanced
diamond film growth by Xe-added microwave plasma CVD”, Thin
solid films, 368 (2000) 269-274.
27.Heer, de walt A., A. Châtelain, D. Ugarte, “A carbon
Nanotubes Field-emission Electron Source”, Science, 270, 17
(1995) 1179-1180.
28.Iijima, S., Nature, “Helical microtubules of graphitic
carbon”, 354 (1991) 56-58.
29.Iijima, S., and Toshinari Ichihashi, “Single-shell carbon
nanotubes of 1-nm diameter”, Nature, 363 ,17 (1993) 603-605.
30.ITRS, the international technology roadmap for
semiconductors. 1999 ed. [http:// public.itrs.net].
31.Jae-hee Han, Ha jin Kim, Min-Ho Yang, Cheol Woong Yang, Ji-
Beom Yoo, Chong-Yun Park, Yoon-Ho Song and Ki-Soo Nam, ”
Effect of thickness of Ni layer deposited on glass substrate
on the growth and emission properties of carbon nanotubes”,
Materials science & engineering C, C16 (2001) 65-68.
32.Jason H. Hafner, Chin Li Cheung, Charles M. Lieber, “Growth
of nanotubes for probe microscopy tips”, Nature, 398, 29
(1999) 761- 762.
33.Jin, L., C. Bower, and O. Zhou, “Alignment of carbon
nanotubes in a polymer matrix by mechanical stretching”,
Appl. Phys. Lett., 73 (1998) 1197-1199.
34.Jones, J. M., R. P. Malcolm, K. M. Thomas and S. H.
Bottrell, “The anode deposit formed during the carbon-arc
evaporation of graphite for the synthesis of fullerenes and
carbon nanotubes”, Pergamon 34, 2 (1996) 231-237.
35.Koh, K. W., H. J. Oh, H. Choi, H. Kurino and M. Koyanagi,
“A novel atomic doping technology for ultra-shallow junction
of SOI-MOSFETs”, Material Science and Engineering B89 (2002)
435-438.
36.Liu, C., Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M.
S. Dresseslhaus, “Hydrogen Storage in Single-walled carbon
nanotubes at room temperature”, Science 286, 5 (1999) 112-
113.
37.Maex K. and M. V. Rossum, in properties of metal silicides,
INSPEC 1995.
38.Massalski, Thaddeus B., in binary alloy phase diagrams,
American Society for Metals 1986
39.Mintmire, J. W., B. I. Dunlap, C. T. White, “Are Fullerene
Tubules Metallic?”, Phys. Rev. Lett, 68 (1992) 631-634.
40.Mao, J. M., L. F. Sun, L. X. Qian, Z. W. Pan, B. H. Chang,
W. Y. Zhou, G. Wang. and S. S. Xie, “Growth of carbon
nanotubes on cobalt disilicide precipitates by chemical
vapor deposition”, Appl. Phys. Lett., 72 (1998) 3297-3299.
41.NEC , 2001
42.Nolan, P. E., Michael J. Schabei., David C. Lynch and Andrew
Hall Cutler, “Hydrogen control of carbon deposit
morphology”, Pergamon, 33, 1(1994) 79-85.
43.Nolan, P. E., and D. C. Lynch, and A. H. Cutler, “Graphite
encapsulation of catalytic metal nanoparticles”, Pergamon,
33, 1(1996) 817-819.
44.Pirio, G. et al., "Fabrication and electrical
characteristics of carbon nanotubefield emission
microcathodes with an integrated gate electrode
nanotechnology “V13 pp1-4 (2002).
45.Qin, L. C., “CVD synthesis of carbon nanotubes”, Journal
of material science letters16 (1997) 457-459.
46.Rao, A. M., E. Richter, Shunji Bandow, Bruce Chase, P. C.
Eklund, K. A. Williams, S. Fang, K. R. Subbaswarry, M.
Menon, A. These, R. E. Smalley, G. Dresselhaus and M. S.
Dresselhaus, “Diameter-Selective Raman Scattering from
vibrational Modes in Carbon Nanotubes”, Science 275, 10
(1997) 187-191.
47.Ruoff, R. S., J. Tersoff, Donald C. Lorents, Shekhar
Subramoney and Bryan Chan, “Radial deformation of carbon
nanotubes by Van der waals forces”, Nature 364, 5 (1993)
514-516.
48.Shihe Yang and Ping Sheng, “Physics and Chemistry of
Nanostructured Materials”, Taylor and Francis, (1999) 128-
130.
49.Tsai, S. H., F. K. Chiang, T. G. Tsai., F. S. Shieu and H.
C. Shih, “Synthesis and characterization of the aligned
hydrogenated amorphous carbon nanotubes by electron
cyclotron resonance excitation” ,Thin solid films, 366
(2000) 11-15.
50.Tans, S. J., Alwin R. M. Verschueren and Cees Dekker, “Room-
temperature transistor based on a single carbon nanotubes”,
Nature 393, 7(1998) 49-52.
51.Teo, K. B. K., M. Chhowalla, G. A. J. Amaratunga, and W. I.
Mine, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and
D. Pribat, “Uniform patterned growth of carbon nanotubes
without surface carbon”, Appl. Phys. Lett. 79, 10 (2001)
1534-1536.
52.Thiên-Nga, L., Jean-Marc Bonard, Richard Gáal, and László
Forró and Klara Jernadi, “Comparison of catalytically grown
and arc-discharge carbon nanotubes tips”, Appl. Phys. Lett.
80, 5 (2002) 850-582.
53.Thompson, P.E. and J. Bennett, “Thermal stability of ultra-
shallow junctions in silicon formed by molecular-beam
epitaxy using boron delta doping”, Materials science and
engineering B89 (2002) 211-215.
54.Wang, Q. H., T. D. Corrigan. J. Y. Dai, and R. P. H. Chang,
A. R. Krauss, “Field emission from nanotube bundle emitters
at low fields”, Appl. Phys. Lett. 70, 24 (1997) 3308-3310.
55.Wyon, C., “Future technology for advanced MOS device”, NIM
B 186 (2002) 380-391.
56.Ye, Y C.C. Ahn, C. Witham, and B. Fultz, J. Liu, A. G.
Rinzler, D. Colbert, K. A. Smith, and R. E. Smalley,
“Hydrogen adsorption and cohesive energy of single-walled
carbon nanotubes”, Appl. Phys. Lett., 74, 16 (1999) 2307-
2309.
57.Zant in :Microchip Fabrication Fouth Edition:, pp.335-339
(McGraw-Hill)
58.Zhang, J., Xiaoyan Ye, jun Chang and S. Bernard,
“Continuous CoSi2 layers in silicon synthesized by Co-ion
implantation”, Materials letters 32 (1997) 121-126.
59.Zhang, Y. and S. Iijima, “Formation of single-wall carbon
nanotubes by laser ablation of fullerenes at low
temperature”, Appl. Phys. Lett. 75, 20 (1999) 3087-3089.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top