跳到主要內容

臺灣博碩士論文加值系統

(75.101.211.110) 您好!臺灣時間:2022/01/26 12:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳榮倫
研究生(外文):Chen Rung Luen
論文名稱:以Co2NiO4和CoPdO2為觸媒利用微波電漿輔助化學氣相沉積法合成含合金之碳奈米結構
論文名稱(外文):Syntheses of alloy-containing carbon nanostructures using Co2NiO4 and CoPdO2 catalysts by microwave plasma chemical vapor deposition
指導教授:郭正次
指導教授(外文):Kuo Cheng-Tzu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:105
中文關鍵詞:碳奈米管
相關次數:
  • 被引用被引用:2
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
為著做為絕緣的合金奈米線的可能應用,本實驗計畫使用合金氧化物為觸媒,研究充填合金在碳奈米結構中的可能性和他們的成長機制。使用微波電漿化學氣相沉積法,在矽晶片上合成含有合金的奈米結構,以Co2NiO4和CoPdO2合金氧化物為觸媒,甲烷和氮氣為來源
氣體。純金屬(Co、Ni和Pd)的鍍膜使用物理氣相沉積法,沉積在Si
晶片上。沉積後的基材放置在大氣爐中做氧化處理形成合金氧化物。
鍍有合金氧化膜的基材,使用氫電漿前處理使觸媒形成奈米島狀形貌,用以合成奈米結構。這合金氧化物合成奈米結構,以AFM、SEM、
TEM、XRD、EPMA、EDX、Raman和J-V量測分析其特性。
結果顯示使用CoPdO2觸媒可合成充填金屬的奈米結構,而Co2NiO4觸媒則沒發現可以形成充填合金的奈米結構。在這裡CoPdO2合成之奈米結構為端部成長(tip growth)之碳奈米管或奈米顆粒。而以Co2NiO4觸媒合成之奈米結構為(base growth)之碳奈米管。結果也指出形成奈米結構的關鍵參數有觸媒原料、氫電漿前處理時間和沉積溫度。氫電漿前處理時間之作用實質上是延長奈米島狀觸媒的聚集效應。所以較長的處理時間有助於形成較大的島狀觸媒,以利形成充填合金的碳奈米管。沉積溫度的作用基本上是相似於氫電漿前處理時間的作用。在較高的沉積溫度有助於提高觸媒的流動性而可被毛細作用力充填進入管中。
在場發射性質方面,結果顯示充填合金的碳奈米管沒有場發射的
現象。沒有充填合金的碳奈米管起始電壓為4.8 V/μm(定義在電流密度為1 μA/cm2下)。另外值得注意的一點是在目前的條件下,並沒有發現竹節狀碳奈米管的出現,雖然在文獻報導上加入氮氣是合成竹節狀碳奈米管的主要因素。
ABSTRACT
For potential applications as the insulated alloy nano-wires, this work was planning to examine the feasibility of filling the alloy in carbon nanostructures using alloy oxides as catalysts and to study their growth mechanisms. The alloy-contained carbon nanostructures were synthesized on Si wafer by microwave plasma chemical vapor deposition (MPCVD) using CH4 and N2 as source gases and alloy oxides (Co2NiO4 and CoPdO2) as catalysts. The pure metal coatings (Co, Ni and Pd) on Si wafers were prepared by physical vapor deposition. The coated substrates were followed by oxidation in air furnace to form alloy oxides coatings. The alloy oxide-coated substrates were then pretreated in hydrogen plasma atmosphere to become nano-islands to act as catalysts for nanostructure growth. The alloy oxide-assisted nanostructures were characterized by AFM, SEM, TEM, XRD, EPMA, EDX, Raman spectroscopy and field emission J-V measurement.
The results show that the alloy-filled carbon nanostructures can be obtained by using CoPdO2 as the catalyst instead of Co2NiO4. Where the CoPdO2-assisted nanostructures are tip-growth CNTs or nano-particles, and the Co2NiO4—assisted nanostructures are base-growth CNTs. The results also indicate that the key parameters governing the nanostructures are catalyst materials, hydrogen plasma pretreatment time and deposition temperature. Effect of hydrogen plasma pretreatment time is essentially to prolong the agglomeration effect on the nano-islands of catalyst. Therefore, longer pretreatment time favors a larger island size to form alloy-filled CNTs. Effect of deposition temperature is basically similar to effect of hydrogen plasma pretreatment time. A high deposition temperature favors a higher fluidity of catalyst to fill into the tubes by capillary force.
On field emission properties, the results show that the alloy-filled CNTs have no significant field emission. The turn-on voltage of the CNTs without filling alloy is about 4.8 V/m defined at current density of 1 A/cm2. It is also interesting to note that there are no bamboo-like CNTs in the present conditions, though the presence of N were often reported to be the main parameter to form bamboo-like CNTs.
目錄
中文摘要 ……………………………………………………………...i
英文摘要 ……………………………………………………………...iii
致謝 …………………………………………………………………...v
目錄 ……………………………………………………………...........vi
符號說明 ………………………………………………………...........x
表目錄 ……………………………………………………..………….xi
圖目錄 …………………………………………………………………xii
第一章 前言 ………………………………………………………..1
第二章 文獻回顧 …………………………………………………..3
2.1 碳奈米結構之種類及性質 ……………………………………3
2.1.1 富勒烯及奈米顆粒 …………………………………….3
2.1.2 碳奈米管及奈米棒 …………………………………….4
2.1.3 竹節狀碳奈米管 ……………………………………….5
2.1.4 充填金屬的奈米包 …………………………………….5
2.1.5 充填金屬的碳奈米管 ………………………………….6
2.2 碳奈米結構之合成方法 ………………………………………6
2.2.1 觸媒法 ………………………………………………….7
2.2.2 非觸媒法 ……………………………………………….10
2.3 碳奈米結構之成長機制 ……………………………………….10
2.3.1 碳奈米管的成長機制 …………………………………..12
2.3.2 充填金屬之碳奈米結構的成長機制 …………………..14
2.4合金和純元素對成長碳奈米結構之比較 ……………………..15
2.5 影響碳奈米結構之主要製程參數 …………………………….16
2.6 碳奈米結構與性質之分析方法 ………………….……………17
2.7 碳奈米結構之應用 .....................................................................19
2.7.1 電子場發射應用 ………………………………………..20
2.7.2 儲氫媒體的應用 ………………………………………..23
2.7.3 鋰離子電池的應用 ……………………………………..23
2.7.4 原子力顯微鏡的應用 …………………………………..23
2.7.5 化學偵測器的應用 ……………………………………..24
2.7.6 強化複合材料的應用 …………………………………..24
2.7.7 奈米溫度計的應用 ……………………………………..24
2.7.8 生物醫學方面的應用 …………………………………..25
2.7.9 奈米磁性方面的應用 …………………………………..26
2.7.10奈米微機械的應用 …………………………………….26
2.7.11 電子導線傳輸的應用 …………………………………27
第三章 實驗方法 …………………………………………………….28
3.1 實驗構想 ……………………………………………………….28
3.2 實驗流程 ……………………………………………………….28
3.3 MPCVD系統簡介 …………………………………………….29
3.4 反應氣體、原料、基材及試片前處理 ……………………….30
3.5 沉積奈米結構之條件與步驟 ……………………………….…31
3.6 分析方法 ……………………………………………………….32
3.6.1 形貌及微觀結構分析 …………………………………..32
3.6.2 觸媒晶體結構分析 ……………………………………..33
3.6.3 鍵結分析 ………………………………………………..33
3.6.4 場效發射性質分析 …….……………………………….34
第四章 結果和討論 ………………………………………………..35
4.1 前處理後觸媒表面形貌及結構 ……………………………….35
4.1.1 高溫合金化及氧化後觸媒表面形貌及結構 …………..35
4.1.2 氫電漿蝕刻後觸媒表面形貌 …………………………..36
4.2 奈米結構之形貌 ……………………………………………….36
4.2.1 觸媒對成長奈米結構形貌之影響 ……………………..36
4.2.2 氫電漿蝕刻時間對成長奈米結構形貌之影響 ………..37
4.2.3 偏壓對成長奈米結構形貌之影響 ……………………..38
4.2.4 溫度對成長奈米結構形貌之影響 ……………………..39
4.2.5 沉積時間對成長奈米結構形貌之影響 ……………….39
4.3 TEM成長機制分析及成份分析比較 …………………………40
4.4 拉曼特性比較 ………………………………………………….41
4.5 場效發射特性比較 …………………………………………….42
第五章 結論 …………………………………………………………..43
第六章 未來展望 ……………………………………………………..46
參考文獻 ………………………………………………………………47
表 ………………………………………………………………………54
圖 ………………………………………………………………………61
參考文獻
1. Ajayan, P. M., S. Iijima, “Capillarity-induced filling of carbon
nanotube”, Nature, 361(1993)333-334.
2. Ajayan, P. M., O. Stephan, Ph. Redlich and C. Colliex, “Carbon
nanotubes as removable templates for metal oxide nanocomposities
and nanostructures”, Nature, 375(1995)564-567.
3. Bower, C., ” Plasma-induced alignment of carbon nanotubes “, Applied
Physics Letter, 77(2000)2767-2769.
4. Bower, C. and O. Zhou, ”Nucleation and growth of carbon nanotubes
by microwave plasma chemical vapor deposition“, Applied Physics
Letter, 77(2000)2767-2769.
5. Botti, S., R. Ciardi, M. L. Terranova, S. Piccirillo, V. Sessa and M. Rossi, ”Carbon nanotubes and nanowires grown from spherical carbon nano-particle“, Chemical Physics Letter, 355(2002)395-399.
6. Cao, A., C. Xu, J. Liang, D. Wu and B. Wei, ”X-ray diffraction
characterization on the alignment degree of carbon nanotubes“,
Chemical Physics Letter, 344(2001)13-17.
7. Chen, J., M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund and
R. C. Haddon, ”Solution properties of single-walled carbon nanotubes
“, Science, 282(1998)95-98.
8. Chen, X. H., S. Q. Feng, Y. Ding, J. C. Peng and Z. Z. Chen, ”The
formation conditions of carbon nanotubes array based on FeNi alloy
island films“, Thin Solid Films, 339(1999)6-9.
9. Chen, Y., D. T. Shaw and L. Guo, ”Field emission of different oriented carbon nanotubes“, Applied Physics Letter, 76(2000)2469-2471.
10. Chhowalla, M., K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson and W. I. Milne, ”Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition“, Journal of Applied Physics, 90(2001)5308-5317.
11. Choi, Y. C., D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi. N. S. Lee and J. M. Kim, ”Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition“, Synthetic Metals, 108(2000)159-163.
12. Choi, Y. C., Y. M. Shin, Y. H. Lee and B. S. Lee, ”Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition“, Applied Physics Letter, 76(2000)2367-2369.
13. Choi, Y. C., D. W. Kim, T. J. Lee, C. J. Lee and Y. H. Lee, ”Growth mechanism of vertically aligned carbon nanotubes on silicon substrates“, Synthetic Metals, 117(2001)81-86.
14. Ci, L., B. Wei, C. Xu, J. Liang, D. Wu, S. Xie, W. Zhou, Y. Li, Z. Liu and D. Tang, “Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method”, Journal of Crystal Growth, 233(2001)823-828.
15. Collins, P. G., M. S. Amold and P. Avouris, ”Engineering carbon nanotube circuits using electrical breakdown“, Science, 292(2001)706-709.
16. Demoncy, N. O. Stephan, N. Brun, C. Colliex, A. Loiseau and H. Pascard, ”Sulfur:the key for filling carbon nanotubes with metals“, Synthetic Metals, 103(1999)2380-2383.
17. Doillon, A. C., K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethuune and M. J. Heben, ”Storage of hydrogen in single=walled carbon nanotubes “, Nature, 376(1997)377-379.
18. Dresselhaus, M. S., G. Dresselhaus and P. C. Eklund, ”Science of fullerenes and carbon nanotube s“, Academic press, San Diego(1995)p18,p40,p60.
19. Dresselhaus, M. S. and P. Avouris, Carbon Nanotube Synthesis, Structure, Properties and Application, ed by M. S. Dresselhaus, G. Dresselhaus and P. Avouris, Springer, (2001)pp.7-8
20. Ebbesen, T., W., E. Dujardin, H. Hiura and K. Tanigaki, ”Capillarity
and wetting of carbon nanotubes“, Science, 265(1994)1850-1852.
21. Ebbesen, T. W., ”Wetting, filling and decorating carbon nanotubes“,
Journal Physics Chemistry of Solid, 57(1995)951-955.
22. Ebbesen, Thomas. W. ”Carbon nanotubes“, CRC press, Boca Raton(1997) pp.193-154
23. Endo, M., K. Takeuchi, K. Kobori, K. Takahashi, H. W. Kroto and A. Sarkar, ” Pyrolytic carbon nanotubes from vapor-grown carbon fibers“, Carbon, 33(1995)873-881.
Journal physics chemistry of solids, 57(1995)951-955.
24. Falvo, C. H., ”Rolling of carbon nanotube“, Nature, 74(1999)475-476.
25. Flahaut, E., A. Govindaraj, A. Peigney, C. Laurent, A. Rousset and C. N. R. Rao, ”Synthesis of single-walled carbon nanotubes using (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solution“, Chemical Physics Letter, 300(1999)236-242.
26. Gao, B., A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu and O. Zhou, ”Electrochemical intercalation of single-walled carbon nanotubes with lithium“, Chemical Physics Letter, 307(1999)153-157.
27. Gao, X. P., X. Qin, F. Wu, H. Liu, Y. Lan, S. S. Fan, H. T. Yuan, D. Y. Song and P. W. Shen, ”Synthesis of carbon nanotubes by catalytic decomposition of methane using LaNi5 hydrogen storage alloy as a catalyst“, Chemical Physics Letter, 327(2000)271-276.
28. Gao, X. P. and Y. Bando, ”nanothermometer“, Science, 300(2001)378-379.
29. Green, M. L. H., S. C. Tsang, Y. K. Chen and P. J. F. Harris, ”A simple chemical method of opening and filling carbon nanotubes“, Nature, 372(1994)159-162.
30. Grobert, N., M. Terrones, A. J. Osborne, H. Terrones, W. K. Hsu, S. Trasobares, Y. Q. Zhu, J. P. Hare and H. W. Kroto, ”Thermolysis of C60 thin films yields Ni-filled tapered nanotubes“, Applied Physics A Material Science & Processing, 67(1998)595-598.
31. Harris, P. J. F., ” Carbon nanotubes and related structures“, Cambridge university press, 87(1999)16-24.
32. Iijima, S., ”Helical microtubules of graphitic carbon“, Nature, 354
(1991)56-58.
33. Iijima, S., ”Growth of carbon nanotube“, Material Science and
Engineering B19(1993)172-180.
34. Jung, M., K. Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee and J. W. Park, ”Growth of carbon nanotubes by chemical vapor deposition“, Diamond and Related Material, 10(2001)1235-1240.
35. Kitiyanan, B., W. E. Alvarez, J. H. Harwell and D. E. Resasco, ”Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts“, Chemical Physics Letter, 317(2000)497-503.
36. Kalish, R. and Y. Avigal, ”Growth of aligned carbon nanotubes by biasing during growth“, Applied Physics Letter, 78(2001)2291-2293.
37. Kroto, H. W., J. R. Heath, S. C. O’Brien, R. F. Curl and R. E.
Smally, ”C60:Buckminsterfullerene“, Nature 318(1985)162-163.
38. Kratschmer, W., L. D. Lamb, K. Fostiropoulos and D. R. Huff, ” C60:a new form of carbon“, Nature 347 (1990)354-357.
39. Lee, C. J., ”Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition“, Applied Physics Letter, 77(2000)3397-3399.
40. Lee, C. J., J Park, S. Y. Kang and J. H. Lee, ”Growth of well-aligned carbon nanotubes on a large area of Co-Ni co-deposited silicon oxide substrate by thermal chemical vapor deposition“, Chemical Physics Letter, 323(2000)554-559.
41. Lee, C. J., J. Park, J. M. Kim, Y. Huh, J. Y. Lee and K. S. No, ”Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst“, Chemical Physics Letter, 327(2000)277-283.
42. Lee, C. J., J. H. Park and J. Park, ”Synthesis of bamboo-shaped
multiwalled carbon nanotubes using thermal chemical vapor
deposition“, Chemical Physics Letters, 323(2000)560-565.
43. Lee, C. J., J. Park, Y. Huh and J. Y. Lee, ”Temperature effect on the
growth of carbon nanotubes using thermal chemical vapor deposition“
, Chemical Physics Letter, 343(2001)33-38.
44. Lee, H., Y. S. Kang, P. S. Lee and J. Y. Lee, ”Hydrogen plasma treatment on catalytic layer and effect of oxygen additions on plasma enhanced chemical vapor deposition of carbon nanotube“, Journal of Alloys and Compounds, 330(2002)569-573.
45. Liu, M. and J. M. Cowley, ”Encapsulation of lanthanum carbide in
carbon nanotubes and carbon nanoparticles“, Carbon, 33(1994)
225-232.
46. Ling, C. H., G. W. Meng, L. D. Zhang, N. F. Shen and X. Y. Zhang, ”Carbon nanotubes filled partially or completely with nickel“, Journal of Crystal Growth, 218(2000)136-139.
47. Li, X. and S. Takahashi, ”Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction“, Journal of Magnetism and Magnetic Matreial,214(2000)195-203.
48. Mirkin, C. A., ” nanoprism “, Nature, 370(2001)15-16.
49. Mchenry, M. E., S. A. Majetich and E. M. Kirkpatrick, ”Synthesis, structure, properties and magnetic applications of carbon-coated nanocrystals produced by a carbon arc“, Materials Science& Engineering, A204(1995)19-24.
50. Merkulov, V. I., D. H. Lowndes and L. R. Baylor, ”Scanned-probe field-emission studies of vertically aligned carbon nanofibers“, Journal of Applied Physics, 89(2001)1933-1937.
51. Merkulov, V. I., A. V. Melechko, M. A. Guillorn and D. H. Lowndes, ”Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical vapor deposition“, Applied Physics Letter, 79(2001)2970-2972.
52. Mittal, J., M. Monthioux, H. Allouche and O. Stephan, ”Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air“, Chemical Physics Letter, 339(2001)311-318.
53. Meyyappan, M.,nanotechnology,
http://www.ipt.arc.nasa.gov/nanotechnology.html(2002)
54. Rao, C. N. R., B. C. Satishkumar, A. Govindaraj and M. Nath, ” Nanotubes“, Chemphyschem 2 (2001)78-105.
55. Saito, Y., ”nanoparticles and filled nanocapsules“, Carbon, 33(1995)
979-988.
56. Suda, Y., T. Nakazono, K. Ebihara, K. Baba and S. Aoqui, ” Pulsed
laser deposition of carbon nitride thin film from graphite targets“, Carbon, 36(1998)771-774.
57. Sun, X.., A. Gutierrez, M. J. Yacaman, X. Dong and S. Jin, ”Investigations onmagnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni“, Material Science and Engineering, A286(2000)157-160.
58. Sun, L. F., J. M. Mao, Z. W. Pan, B. H. Chang, W. Y. Zhou, G. Wang, L. X Qian and S. S. Xie, ”Growth of straight nanotubes with a cobalt-nickel catalyst by chemical vapor deposition“, Applied Physics Letters, 74(1999)644-646.
59. Tang, Y. H., Y. F. Zheng, C. S. Lee, N. Wang, S. T. Lee and T. K. Sham, ”Carbon monoxide-assisted growth of carbon nanotubes“, Chemical Physics Letters, 342(2001)259-264.
60.Terrones, M., W. K. Hsu, Schilder, H. Terrones, N. Grobert, J. P. Hare, Y. Q. Zhu, M. Schwoerer, K. Prassides, H. W. Kroto and D. R. M. Walton, ”Novel nanotubes and encapsulated nanowires“, Applied Physics A Material Science & Processing, 66(1998)307-317.
61. Treboux, G., P. Lapstun, Z. Wu and K.Silverbrook,
”Interference-modulated conductance in a three-terminal system“,
Journal Physics Chemistry B, 103(1999)8671-8674.
62. Tsai, S. H., C. W. Chao, C. L. Lee and H. C. Shih, ”Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis“, Applied Physics Letter, 74(1999)3462-3464.
63. Ugarte, D. A. Chatelain and W. A. de Heer, ”Nanocapillarity and chemistry in carbon nanotubes“, Science, 274(1996)1897-1899.
64. Ugarte,D., T. Stockli, J. M. Bonard, A. Chatelain and W. A. de Heer, ”Filling carbon nanotubes“, Applied Physics A Material Science & Processing, 67(1998)101-105.
65. Wei, Y. Y., G. Eres, V. L. Merkulov and D. H. Lowndes, ”Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition“, Applied Physics Letter, 78(2001)1394-1396.
66. Wang, X., Z. Hu, Q. Wu, X. Chen and Y. Chen, ”Synthesis of
multi-walled carbon nanotubes by microwave plasma-enhanced
chemical vapor deposition“, Thin Solid Films, 390(2001)130-133.
67. Wang, N. and B. D. Yao, ”Nucleation and growth of well-aligned, uniform-sized carbon nanotubes by microwave plasma chemical vapor deposition“, Applied Physics Letter, 78(2001)4028-4030.
68. Wang, Y. H., J. Lin, C. H. A. Huan and G. S. Chen, ”Synthesis of large area aligned carbon nanotube array from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition“, Applied Physics Letter, 79(2001)680-682.
69. Xie, S., W. Li, Z. Pan., B. Chang and L. Sun, ”Carbon nanotube
arrays“, Materials Science & Engineering , A286(2000)11-15.
70. 工研院電子所, http://www.erso.itri.org.tw/ersoweb/rd/Status/images/28.jpg
71. 尹邦耀, 奈米時代, 五南出版社, 2002, pp.87-88
72. 汪建民編, 材料分析, 中國材料協會,1998, pp.659-672
73. 林清炎,“高中化學中的數學C60的發現與其邊、面數目之計算”, http://www.cysh.cy.edu.tw/subject/chem.htm(2001)
74. 武富 荒和近角總信 著, 磁性流體基礎的應用, 遠流出版,1990,
pp.126
75. 蔡尚華, 清大材料所博士論文 碳基奈米材料合成和鑑定(2000)
76. 蔡明和, 交大材料所碩士論文 大面積定向性奈米碳管之成長機制及性質-觸媒輔助電子迴旋共振化學氣相沉積法(2001)
77. 錢國基, 產業動向, 2001, pp.109-201
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top