跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 04:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林立偉
研究生(外文):Liwei Lin
論文名稱:有序-無序型磷化銦鎵材料對異質接面雙載子電晶體元件特性之影響
論文名稱(外文):The Effect of Order-Disorder InGaP Material on the HBT Device Performance
指導教授:張翼張翼引用關係
指導教授(外文):Edward Y. Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:磷化銦鎵/砷化鎵雙載子電晶體元件
外文關鍵詞:InGaP/GaAsHBT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之實驗目的在於研究以低壓金屬有機化學氣相磊晶法成長之磷化銦鎵的有序化係數和不同成長溫度之間的關係,最後將應用在異質接面雙載子電晶體上,討論有序化係數對元件特性可能產生之影響。
在實驗中,以光激發儀(PL)探討材料能隙 和長晶溫度之關係,並藉由改變量測輸入功率的方法,最後可以計算出不同長晶溫度磷化銦鎵的有序化係數。雙晶X光繞射法(DCXRD)和拉曼光譜(Raman spectra)亦提供相關的證據解釋了不同有序化係數對磷化銦鎵材料所產生的影響。
為了探討磷化銦鎵有序化係數對元件可能產生之影響,在實驗中製作了雙載子電晶體(HBT)。大顆元件的射極尺寸為100x100平方微米,補償電壓(offset voltage)小於150meV,起始電壓(threshold voltage)為0.75V,在集極電流為137mA時,最大電流增益約為85。根據Gummel plot,集極和基極的電流理想係數分別約為1.05和1.35。小顆元件尺寸為4x20平方微米,補償電壓和起始電壓與大顆元件類似,最大電流增益約為95,極集和基極電流理想係數為1.05和1.75。
以650oC成長之磷化銦鎵為射極的HBTs,最大電流增益約為65,而以610oC成長的HBTs最大電流增益為85,這顯示出無序化結構磷化銦鎵能隙較有序化結構為大而使得無序化結構有較佳的操作性能,這也與理論和分析結果符合。

In this thesis, lattice-matched In0.49Ga0.51P alloys grown by Low Pressure Metalorganic Vapor Phase Epitaxy (LP-MOVPE) were studied by photoluminescence spectra, double crystal x-ray rocking curve diffraction analysis and Raman scattering spectra.
This emphasis of the study focused on the analysis of InGaP CuPt type spontaneous ordering. The results reveal that the ordered structure exists in the growth temperature range from 610 to 680oC. The highest order parameter of InGaP exists in the grown temperature at 650oC.
The InGaP/GaAs HBTs process is established to investigate the effect of InGaP order parameter on HBTs performance. The DC characteristics of the HBT devices were measured. The offset voltage is smaller than 150 meV and the threshold voltage is about 0.75V. The ideally factors for collector and base current are about 1.05 and 1.35, respectively.
The current gain of InGaP sample grown at 650oC is about 65 at IC=87 mA, and the current gain of InGaP sample grown at 610oC is about 85 at IC=145 mA. It shows that the disordered InGaP emitter provides higher current gain than the ordered one due to higher energy band gap which is in consistent with the theoretical prediction.

Content
Abstract (Chinese)
Abstract (English)
Acknowledgement
Content
Figure Captions
Chapter1 Introduction 01
1.1Motivation 01
1.2InGaP/GaAs HBTsdevice 01
1.2.1InGaP/GaAs material system advantages 01
1.2.2HBTs device operation 02
1.2.3HBTs compared with GaAs-FETs and Si-BJTs 03
Chapter2 Theories 04
2.1 Order-Disorder structure of InGaP material 04
2.1.1 Disorder structure of InGaP 04
2.1.2 Order structure of InGaP 04
2.2 Influence of Ordered structure 05
2.2.1 Splitting valence band to change energy bandgap 05
2.2.2 Band alignment type 06
2.2.3 Electron accumulation 06
2.3 Analysis methods 07
2.3.1 PL spectrum analysis 07
2.3.2 Raman scattering analysis 08
2.3.3 Double crystal X-ray rocking curve analysis 09
Chapter3 Device Process and Fabrications 11
3.1 Wafer growth 11
3.2 Device process 11
3.2.1 Wafer clean 11
3.2.2 Emitter mesa 12
3.2.3 Base and collector mesa 12
3.2.4 Isolation 3.2.5 Emitter and collector ohmic contact metal 13
3.2.6 Base ohmic contact metal 14
3.2.7 Device passivation 15
3.2.7 Interconnect metal line 15
3.3 DC measurement 16
3.3.1 Ohmic contact 16
3.3.2 Common emitter test 17
3.3.3 Current gain measurement 18
3.3.4 Gummel plot measurement 18
3.3.5 Reliability test 19
3.4 Material Analysis 20
3.4.1 PL spectra 20
3.4.2 Double crystal x-ray rocking curve analysis 20
3.4.3 Raman scattering analysis 21
Chapter4 Results and Discussion 21
4.1 Material analysis and discussion 21
4.1.1 PL 21
4.1.2 DCXRD 23
4.1.3 Raman scattering 23
4.2 DC characteristics of the HBT device 24
4.2.1 n+ GaAs ohmic contact 24
4.2.2 p+ GaAs ohmic contact 25
4.2.3 The DC performance of 100x100cm2 device 25
4.2.4 The DC performance of 4x100cm2 device 26
4.2.5 Device performance in ordering effect 25
Chapter5 Conclusions 27
Reference
Figures

[1] G. S. Chen, D. H. Jaw, G. B. Stringfellow, J. Appl. Phys. 69 (1991) 4263-4272
[2] G. Schmiedel, P. Kiesel, H. Doher, J. Appl. Phys. 51 (1997) 1008-1010
[3] W. C. Liu, J. H. Tsai, S. L. Liu, IEEE Electron Device Lett. 13 (1992_j418.
[4] D. K. Schroder, “Semiconductor Material and Device Characterization”, Wiley-Interscience (1998) Canada.
[5] M. Kondow, H. Kakibayashi, S. Minagawa, J. Crystal Growth 88 (1998) 291.
[6] A. Gomyo, K. Kobayashi, S. Kawata, I. Hino, T. Suzuki, Y. Yuasa, J. Crystal growth 77 (1986) 291.
[7] A. Zuger, S. Mahajan, Ordering and phase separation in epitaxy Ⅲ-Ⅴ alloys; in: T. Moss, S. Mahajan (Eds.), Handbook on Semiconductors, vol. 3, Ch. 19, Elsevier Science, Amsterdam, 1994.
[8] Y. Ohba, M. Ishikawa, H. Sugawara, M. Yamamoto, T. Nakanishi, J. Crystal Growth 77 (1986) 374.
[9] L. C. Su, I. H. Ho, G. B. Stringfellow, J. Appl. Phys. 75 (1994) 5135.
[10] G. S. Homer, A. Mascarenhas, R. G. Alonso, D. J. Friedman, K. Sinha, K. A. Bertnes, J. G. Zhu, J. M. Olson, Phsy. Rev. B 48 (1993) 4944.
11] E. Greger, K. H. Gulden, M. Moser, G. Schmiedel, P. Kiesel, G. H. Dohler, Appl. Phsy. Lett. 70 (1997) 1459.
[12] S. Froyen, A. Zuger, A. Macarenhas, Appl. Phys. Lett. 68 (1996) 20.
[13] T. Kikkawa et al., Inst. Phys. Conf. Ser. 155 (1996) 877.
[14] T. Tanaka, K. Takano, T. Tsuchiya, H. Sakaguchi, J. Crystal growth 221 (2000) 515-519.
[14] m. s. Feng, K. C. Lin, C. C. Wu, H. D. Chen, Y. C. Shang, J. Appl. Phys. 74 (1993) 672-678
[15] J. W. Mayer, S. S. Lau, “Electrical Materials Science: For Integrated Circuits in Si and GaAs”, Macmlliam Oublishing Company.
Electronic material Science: For integrated circuits in Si and GaAs
[16] J. D. Lambkin, L. Considine, S. Walash, Appl. Phys. Lett. 65 (1994) 76-75
[17] Y. Ishitani, S. Minagawa, T. Tanaka, J. Appl. Phys., 75 (1994) 5326-5331
[18] M. C. Delong, P. C. Taylor, J. M. Olson, J. Vac. Sci. Technol. B8 (1990) 948-954
[19] M. Murtagh, J. T. Beechinor, N. Cordero, P. V. Kelly, G. M. Crean, I. L. Farrel, G. M. O’Connor, S. W. Bland, Thin Solid Films 364 (2000) 58-63
[20] Zuger, S. Mahajan, ‘Ordering and phase separation in epitaxy Ⅲ-Ⅴ alloys’; in: T. Moss, S. Mahajan (Eds.), Handbook on Semiconductors, vol. 3, Ch. 19, Elsevier Science, Amsterdam, 1994.
[21] M. Longo, A. Parisini, L. Tarricone, L. Toni, R. Kudelta, Material Science and Engineering B86 (2001) 157-164
[22] Q. Liu, H. Lakner, F. Scheffer, A. Linder, W. Prost, J. Appl. Phys. 73 (1993) 2770-2775
[23] Q. Liu, W. Prost, F. J. Tegude, Appl. Phys. Lett. 67 (1995) 2807-2809
[24] A. Gomyo, K. Kobayashi, S. Kawata, I. Hino, T. Suzuki, Journal of Crystal Growth 77 (1986) 367-373
[25] G. R. Moriarty, M. Kildemo, J. T. Beechinor, M. Murtagh, P. V. Kelly, G. M. Crean, S. W. Bland, Thin Solid Film 364 (2000) 244-248.
[26] O. Dehaese, X. Wallart, O. Schuler, F. Mollot, Applied Surface Science 123/124 (1998) 523-527
[27] G. Attolini, S. Scardova, F. Germini, C. Pelosi, O. Martines, L. F. Sanz, M. A. Gonzales, J. Jimenez, Material Science and Engineering B91-92 (2002) 123-127
[28] S. W. Lin, C. M. Fetzer, R. T. Lee, J. K. Shurtleff, G. B. Stringfellow, Appl. Phys. Lett. 76 (2000) 2716-2718
[29] G. R. Moriarty, M. Kildemo, J. T. Beechinor, M. Murtagh, P. V. Kelly, G. M. Crean, S. W. Bland, Thin Solid Films 364 (2000) 244-248
[30] C. Nguyen, M. Micovic, IEEE Transcations on Electron Devices, vol. 48 No. 3 (2001) 472-478
[31] H. Hwang, G. I. Ng, H. Zheng, Y. Xiong, S. Halder, K. Yuan, C. L. Tan, IEEE Transcation on Electron Device vol. 48 no. 12 (2001) 2671-2676.
[32] C. R. Abernathy, F. Ren, P. W. Wisk, S. J. Pearton, R. Esagui, Appl. Phys. Lett. 61 (1992) 1092-1094
[33] H. Yang, H. Hwang, G. I. Ng, H. Zheng, K. Radhakrishnan, International Conference on Indium Phosphide and Related Materials (2001) 200-203

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top