跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李家浩
研究生(外文):Jia-Hao Li
論文名稱:以溶液聚合法製備低介電係數聚亞胺薄膜之研究
論文名稱(外文):Preparation of Polyimine Thin Films with Low-dielectric Constant Property Using Solution Polymerization Method
指導教授:謝宗雍
指導教授(外文):T. E. Hsieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:78
中文關鍵詞:聚亞胺低介電常數
外文關鍵詞:polyiminelow dielectric constant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本實驗以溶液聚合法(solution polymerization)製備具有低介電常數特性的芳香族聚亞胺。以MIM結構量測聚亞胺之介電常數、崩潰電場和散逸因子,利用TGA量測聚亞胺的熱裂解溫度,並對聚亞胺做黏度和吸濕性測試,量測聚亞胺的固有黏度和吸濕率。黏度量測結果顯示,芳香族聚亞胺的固有黏度範圍是0.45∼0.57 dL/g,在氮氣環境下對聚亞胺所做的熱性質分析結果顯示,聚亞胺5%熱裂解溫度大約486 ~ 498℃,證明聚亞胺具有優良的熱穩定性,實驗結果並顯示聚亞胺具有低介電常數(範圍從2.23∼2.97)、低吸濕性(小於0.6%)和高崩潰電場(範圍從0.86∼3.81 MV/cm)的優點,但散逸因子量測結果顯示,測試頻率超過數個MHz之後,聚亞胺之介電損失特性不盡理想,其有待後續之研究改進。

ABSTRACT
Solution polymerization was applied to prepare the low dielectric constant aromatic polyimines and their physical properties were investigated. We evaluated electrical properties of polyimines including dieletric constant, breakdown voltage and dissipation factor. Thermal decomposed temperature of polyimine was measured by thermal gravimetric analyzer (TGA) to evaluate the thermal stability of the polymer specimens. We also measured the inherent viscosity and moisture absorption index of aromatic polyimines. The aromatic polyimines have inherent viscosities of 0.45 ~ 0.57 dL/g. The TGA results showed that the temperatures of 5% weight loss of aromatic polyimines are in the range of 486 ~ 498℃ in nitrogen ambient, indicating that the aromatic polyimines possess excellent thermal stability. Electrical property is measurement indicated that the aromatic polyimines have lower dielectric constant (ranging from 2.23 to 2.97), lower moisture absorption (<0.6%), and high breakdown voltage (ranging from 0.86 to 3.81 MV/cm). However, dissipation factor measurement revealed that the dielectric loss property of polyimines remains unsatisfactorily when the frequency exceeds several MHz and further study is required.

目錄
中文摘要………………………………………………………………•Ⅰ
英文摘要………………………………………………………………•Ⅱ
誌謝……………………………………………………………………•Ⅳ
目錄……………………………………………………………………•Ⅴ
圖目錄…………………………………………………………………•Ⅷ
表目錄…………………………………………………………………•Ⅹ
第一章 前言……………………………………………………………•1
第二章 文獻回顧………………………………………………………•3
2.1 聚亞胺(polyimine)簡介……………………………………•3
2.1.1 聚亞胺的聚合方法………………………………………•4
2.1.2 聚亞胺的導電特性………………………………………•7
2.2 介電理論………………………………………………………•9
2.3 低介電常數材料的需求………………………………………•12
2.4 低介電常數材料的發展………………………………………•15
2.4.1 二氧化矽(SiO2)………………………………………•16
2.4.2 氟化矽酸鹽玻璃(FSG)………………………………•17
2.4.3 摻雜碳的二氧化矽………………………………………•17
2.4.4 含氫矽酸鹽類(HSQ)…………………………………•18
2.4.5 含甲烷基矽酸鹽類(MSQ)……………………………•19
2.4.6 聚四氟乙烯(PTFE)…………………………………… 20
2.4.7 氟化聚亞醯胺(FPI)…………………………………… 20
2.4.8 聚芳香烯醚(PAE)……………………………………… 22
2.4.9 Benzocyclobutene(BCB)……………………………… 23
2.4.10 SiLK …………………………………………………… 23
2.5 研究動機………………………………………………………•25
第三章 實驗方法………………………………………………………27
3.1 實驗藥品………………………………………………………•27
3.2 實驗儀器………………………………………………………•31
3.3 實驗流程………………………………………………………•32
3.4 實驗步驟………………………………………………………•33
3.4.1 烘膜方法…………………………………………………•35
3.4.2 下電極的製作……………………………………………•35
3.4.3 介電層的製膜……………………………………………•35
3.4.4 上電極的製作……………………………………………•36
3.5 溶解度測試方法………………………………………………•36
3.6 黏度量測方法…………………………………………………•37
3.7 傅氏紅外線光譜儀(FTIR)量測方法……………………•38
3.8 熱重分析儀(TGA)量測方法…………………………………38
3.9 吸濕性量測方法………………………………………………•39
3.10 抗張強度量測方法…………………………………………•39
3.11 電性量測方法…………………………………………………•42
第四章 結果與討論……………………………………………………43
4.1 聚亞胺的成膜性………………………………………………43
4.2 溶解度測試……………………………………………………46
4.3 黏度測試………………………………………………………49
4.4 FTIR光譜分析…………………………………………………50
4.5 熱性質分析……………………………………………………52
4.6 吸濕性測試……………………………………………………55
4.7 機械性質測試…………………………………………………56
4.8 介電常數量測…………………………………………………58
4.9 散逸因子(tanδ)對頻率特性的量測………………………60
4.10 介電常數對頻率量測…………………………………………63
4.11 崩潰電場量測…………………………………………………65
4.12 未來展望………………………………………………………68
第五章 結論……………………………………………………………69
參考文獻………………………………………………………………72
圖目錄
圖2-1 聚亞胺的聚合時間與固有黏度的關係圖………………………4
圖2-2 MePPD-TA的結構示意圖………………………………………5
圖2-3 聚亞胺的聚合反應式……………………………………………6
圖2-4 導電高分子的導電模式示意圖…………………………………8
圖2-5 四種不同的極化機構…………………………………………•10
圖2-6 極化和頻率的關係圖…………………………………………•11
圖2-7 積體電路中線寬和時間的關係圖……………………………•12
圖2-8 FSG的結構示意圖……………………………………………17
圖2-9 HSQ的結構示意圖……………………………………………19
圖2-10 MSQ的結構示意圖…………………………………………•19
圖2-11 PTFE的結構示意圖…………………………………………•20
圖2-12 BPDA-PDA的結構示意圖…………………………………21
圖2-13 PMDA-TFMOB-6FDA-PDA的結構示意圖…………………21
圖2-14 FLARE 1.0、FLARE 2.0及PAE-2的結構示意圖…………•22
圖2-15 BCB的結構示意圖…………………………………………•23
圖2-16 SiLK的結構示意圖…………………………………………•24
圖3-1 實驗流程圖……………………………………………………•32
圖3-2 實驗的基本反應式……………………………………………•33
圖3-3 實驗裝置圖……………………………………………………•34
圖3-4 尤伯洛德毛細管黏度計………………………………………•37
圖3-5 啞鈴形試片的示意圖…………………………………………•39
圖3-6 工程應力-工程應變曲線圖…………………………………••40
圖4-1 無法成膜之聚亞胺結構示意圖………………………………•45
圖4-2 可以成膜之聚亞胺結構示意圖………………………………•46
圖4-3 對苯二甲醛與各種二胺類的FTIR光譜圖…………………•51
圖4-4 間苯二甲醛與各種二胺類的FTIR光譜圖…………………•52
圖4-5 對苯二甲醛與各種二胺類的熱重損失圖……………………•54
圖4-6 間苯二甲醛與各種二胺類的熱重損失圖……………………•55
圖4-7 介電常數與置放時間的關係圖………………………………•60
圖4-8 四種聚亞胺與Kapton的散逸因子(tanδ)對頻率關係圖…62
圖4-9 四種聚亞胺與Kapton之f × Q對頻率的關係圖……………•63
圖4-10 TPBA和TPBP的介電常數對頻率關係圖…………………•64
圖4-11 IPBA和IPBP的介電常數對頻率關係圖…………………•64
圖4-12 TPBA的漏電流密度對電場圖………………………………66
圖4-13 TPBP的漏電流密度對電場圖………………………………66
圖4-14 IPBA的漏電流密度對電場圖………………………………67
圖4-15 IPBP的漏電流密度對電場圖………………………………67
表目錄
表2-1 製程技術與介電常數的相對關係……………………………13
表2-2 低介電常數材料的基本條件…………………………………14
表2-3 低介電常數材料之介電常數與沈積方式的關係……………15
表2-4 SiO2的沈積方式與特性………………………………………16
表 2-5 SiLK的相關特性………………………………………………25
表4-1 對苯二甲醛與各種二胺類所合成聚亞胺的成膜性…………43
表4-2 間苯二甲醛與各種二胺類所合成聚亞胺的成膜性…………44
表4-3 對苯二甲醛與各種二胺類所合成聚亞胺的溶解度關係……47
表4-4 間苯二甲醛與各種二胺類所合成聚亞胺的溶解度關係……48
表4-5聚亞胺的黏度測試結果………………………………………50
表4-6 聚亞胺5%的熱裂解溫度……………………………………53
表4-7 聚亞胺的吸濕率………………………………………………56
表4-8 聚亞胺與其他低介電常數材料的機械性質…………………57
表4-9 聚亞胺的介電常數值…………………………………………59
表4-10 四種聚亞胺、Kapton和BCB的崩潰電場…………………65

參考文獻
(1) J.W. Yang, and C.S. Wang,“Novel perfluorononenyloxy
group-containing polyimides”, Polymer , 40(1999), p.1411.
(2) Ki Hong Park, Takashi Tani, Masa-aki Kakimoto, and Yoshio Imai,
“Synthesis and characterization of new diphenylfluorene-based
aromaticpolyazomethines”, Macromol.Chem.Phys., 199(1998),
p.1029.
(3) F.R. Diaz, J. Moreno, L.H. Tagle, G.A. East, and D. Radic,
“Synthesis characterization and electrical properties of
polyimines derived from selenophene”, Synthetic Metals,
100(1999), p.187.
(4) Ali G. El-Shekeil, F.A. Al-Yusufy, and S. Saknidy,“DC
Conductivity of some Polyazomethines”, Polymer International,
42(1997), p.39.
(5) T.C. Chang, C.H. Li, and S.Y. Li,“Studies on the Synthesis and
Properties of Poly( amide-azomethine )”, J. Polym. Res.,1(1994),
p.109 ~ p.114.
(6) H.H. Yang, Aromatic High Strength Fibers, New York: Wiley,
(1989), p.641 ~ p.673.
(7) H.R. Kricheldorf, and G. Schwarz, Handbook of Polymer Synthesis,
Part B, New York: Dekker, (1992), p.1673 ~ p.1684.
(8) B. Millaud, and C. Strazielle,“Dilute solution properties of
thermotropic polymers: aromatic polyazomethines”, Polymer,
20(1979), p.563.
(9) P.W. Morgan, S.L. Kwolek, and T.C. Pletcher,“Aromatic
Azomethine Polymers and Fibers”, Macromolecules, 20(1987),
p.729 ~ p.739.
(10) W.G. Gall, U.S. Patent 3493541, (1970), assigned to Du Pont.
(11) A.G. Ei-Shekeil, H.A. Al-Saady, and F.A. Al-Yusufy,“Synthesis
and characterization of some soluble conducting
polyazomethine polymers”, Polymer International, 44(1997),
p.78 ~ p.82.
(12) H.E. Toma, and T.E. Chavez-Gil,“Synthesis and
characterization of a polymetallic supermolecule
containing four ruthenium(Ⅱ)-bipyridine complexes
attached to an iron(Ⅱ) polyimine center”, Inorganica
Chimica Acta, 257(1997), p.197 ~ p.202.
(13) H. Ragossnig, R. SAF, and K. Hummel,“Synthesis and
characterization of polyradicals with a polyimine backbone
and nitronyl nitroxide side groups”, Eur. Polym. J.,32(1996),
p.1307 ~ p.1312.
(14) H. Kim, J.C. Jung, and W.C. Zin,“Solubilization of n-alkanes
into polyazomethines having flexible ( n-alkyloxy ) methyl
side chains”, Polymer, 37(1996), p.2573 ~ p.2576.
(15) P.W. Morgan, U.S. Patents 4048148, (1977), and 4122070, (1978),
Fr. Patent 2310426, (1976), assigned to Du Pont.
(16) Y. Imai, N.N. Maldar, and M.A. Kakimoto,“Synthesis and
characterization of soluble aromatic polyazomethines from
2,5-bis(4-aminophenyl)-3,4-diphenylthiophene and aromatic
dialdehydes”, Journal of Polymer Science: Polymer Chemistry
Edition, 22(1984), p.3771 ~ p.3778.
(17) G.F. D’Alelio, Encycl. Polym. Sci. Technol., 10(1969),
p.659 ~ p.670.
(18) E. Stochmal-Pomarzanska, S. Quillard, M. Hasik, W. Turek, A. Pron,
M. Lapkowski, and S. Lefrant,“Spectroscopic and catalytic
Studies of selected polyimines protonated with
heteropolyacids”, Synthetic Metals, 84(1997), p.427 ~ p.428.
(19) J.L. Bredas, and R. Silbey, Conjugated Polymeric Materials:
Opportunities in Electronics, Optoelectronics, and Molecular
Electronics, Kluwer Academic Publishers, Dordrecht, The
Netherlands, (1992).
(20) T.S. Lee, J. Kim, J. Kumar, and S. Tripathy,“Synthesis and self-
assembled multiplayer thin film formation of water-soluble
conjugated aromatic polyimines”, Macromol. Chem. Phys.,
199(1998), p.1445 ~ p.1450.
(21) H.S. Nalwa, Handbook of Organic Conductive Molecules and
Polymers, New York: Wiley, 4(1997).
(22) D.L. Wise, G.E. Wnek, D.J. Trantolo, T.M. Cooper, and J.D. Gresser,
Electrical and Optical Polymer Systems, (1998).
(23) S.C. Ng, H.S.O. Chan, P.M.L. Wong, K.L. Tan, and B.T.G. Tan,“
Novel heteroarylene polyazomethines: their syntheses and
characterizations”, Polymer, 39(20)(1998), p.4963 ~ p.4968.
(24) C. Chevrot, and T. Henri,“Electrosynthesis and oxidation of
new oligoazomethines containing N-ethylcarbazole groups”,
Synthetic Metals, 118(2001), p.157 ~ p.166.
(25) I. Kulszewicz-Bajer, I. Wielgus, J.W. Sobczak, K. Kruczala, and
A. Pron,“Heteropolyanions doped polyimine preparation and
spectroscopic properties”, Materials Research Bulletin, 30(12)
(1995), p.1571 ~ p.1578.
(26) F. Rohlfing, and D.D.C. Bradley,“Non-linear Stark effect in
polyazomethine and poly(p-phenylene-vinylene): The
interconnection of chemical and electronic structure”,
Chemical Physics, 227(1998), p.133 ~ p.151.
(27) 王宗櫚, 謝達華, 何國賢, 聚合物合成與鑑定法, 台灣復文興業
股份有限公司, (1995), p.9 ~ p.180.
(28) F. Rohlfing, and D.D.C. Bradley,“Non-linear stark effect in
polyazomethine and poly( p-phenylene-vinylene ): The
interconnection of chemical and electronic structure”,
Chemical Physics, 227(1998), p.133 ~ p.151.
(29) 邱碧秀, 電子陶瓷材料, 徐氏基金會, (1996), p.81 ~ p.112.
(30) M. Morgen, J.H. Zhao, M. Hay, T. Cho, and Paul S. Ho,“Structure
-property correlation in low k dielectric materials”, Mat. Res.
Soc. Symp. Proc., 565(1999), p.69.
(31) R. Singh, and R.K. Ulrich,“High and low dielectric constant
materials”, Electrochem., 7(1999), p.26.
(32) W.W. Lee, and P.S. Ho,“Low Dielectric Constant Materials for
ULSI Interlayer Dielectric Applications”, MRS Bulletin/October,
(1997), p.19.
(33) S.K. Chiang, and C.L. Lassen,“The market for low-k interlayer
dielectrics”, Solid State Tech., 10(1999), p.42.
(34) C.V. Nguyen, K.R. Carter, C.J. Hawker, J.L. Hedrick, R.L. Jaffe,
R.D. Miller, J.F. Remenar, H.W. Rhee, P.M. Rice, M.F. Toney, M.
Trollsas, and D.Y. Yoon,“Low-Dielectric, Nanoporous
Organosilicate Films Prepared via Inorganic/Organic Polymer
Hybrid Templates”, Chem. Mater., 11(1999), p.3080.
(35) G. Maier,“Low dielectric constant polymers for
microelectronics”, Prog. Polym., 26(2001), p.3.
(36) Korczynski,“Low-k dielectric costs for dual-damascene
integration”, Solid State Tech., 42(1999), p.43.
(37) Tetsuya Homma,“Low dielectric constant materials and
methods for interlayer dielectric films in ultralarge-scale
integrated circuit multilevel interconnections”, Mater. Sci.
Eng., 23(1998), p.243.
(38) H. Treichel, G. Ruhl, P. Ansmann, R. Wurl, C. Muller, and M.
Dietlmeier,“Low dielectric constant materials for interlayer
dielectric ( Invited paper )”, Microelectronic Engin., 40(1998),
p.1.
(39) A. Singh, G.A. Dixit, R.S. List, S.W. Russell, A.R.K. Ralston, and D.
Aldrich,“Integration of Low-k Dielectrics for High
Performance 0.18 µm Interconnects”, Electrochem. Soc. Proc.,
97-8, p.102.
(40) M. Brillouet,“Multilevel interconnection technologies and
future requirements for logic applications”, Microelectronic
Eng., 37(1997), p.5.
(41) Alvin. S. Loke,“Evaluation of Copper penetration in
low-k polymer dielectrics by bias-temperature stress”, Mater.
Res. Soc. Symp. Proc., 546(1998), p.535.
(42) S.P. Murarka,“Advanced materials for future
interconnections of the future need and strategy”,
Microelectronic Eng., 37(1997), p.29.
(43) W. Volksen, R.D. Miller, J.L. Hedrick, C. Hawker, and P. Furuta,
“Characterization of porous organosilicates for on-chip
applications”, DUMIC Conference, (2000), p.67.
(44) C. Jin, S. List, W.W. Lee, C. Lee, J.D. Luttmer, and R. Havemann,
“Porous Xerogel Films as Ultra-Low Permittivity Dielectrics
for ULSI Interconnect Applications”, Mater. Res. Soci., (1997),
p.463.
(45) 莊達人, VLSI製造技術, 高立圖書有限公司, (2000), p.199.
(46) S.E. Kim, and Ch. Steinbrüchel,“Metal/fluorinated-dielectric
interactions in microelectronic interconnections: Rapid
diffusion of fluorine through aluminum”, Applied Physics
Letters, 75(1999), p.1902.
(47) W.C. Chen, S.C. Lin, B.T. Dai, and M.S. Tsai,“Processing and
Characterization of Low Dielectric Constant Polymers:HSQ
and MSQ”, NSC 87-2216-E002-019, p.32.
(48) M.G. Albrecht,“Materials Issues with Thin Film Hydrogen
Silsequioxane Low k Dielectrics”, J. Electrochem. Soc., 145
(1998), p.4019.
(49) A.C. Descharles, F. Pires, P. Paillet, and J.L. Leray,“Density
function theory applied to the calculation of dielectric
constant of low-k materials”, Microelectronics Reliability,
39(1999), p.279.
(50) 張鼎張, 劉柏村,“NDL在無機類低介電常數材質的研發簡介”
, 毫微米通訊, 5(4)(1999), p.7 ~ p.19.
(51) N.P. Hacker, G. Davis, L. Figge, T. Krajewski, S. Lefferts, J.
Nedbal, and R. Spear,“Properties of new low dielectric
constant spin-on silicon oxide based polymers”, Low-
Dielectric Constant Materials Ⅲ. Symposium Mater. Res.
Soc., 476(1997), p.25 ~ p.30.
(52) R. Singh, S. Sinha, R.P.S. Thakur, and P. Chou,“Some
photoeffect roles in rapid isothermal processing”, Appl.
Phys. Lett., 58(1991), p.1217 ~ p.1220.
(53) J. Brandrup, and E.H. Immergut, editors, Polymer Handbook,
3rd ed. New York: Wiley, (1989), p.V/1.
(54) T.C. Nason, J.A. Moore, and T.M. Lu,“Deposition of
amorphous fluoro-polymer thin films by thermolysis of Teflon
amorphous fluoropolymer”, Appl. Phys. Lett., 60(1992),
p.1866 ~ p.1868.
(55) C.C. Cho, R.M. Wallace, and L.A. Files-Sesler,“Patterning and
etching of amorphous Teflon films”, J. Electron. Mater., 23
(1994), p.827 ~ p.830.
(56) G.B. Blanchet,“Deposition of amorphous fluoropolymers
thin films by laser ablation”, Appl. Phys. Lett., 62(5)(1993),
p.479.
(57) L. Wang, H. Li, J. He, X. He, W. Li, Y. Wang, and H. Li,“Structure
analysis of teflon-like thin films synthesized by ion beam
sputtering deposition”, Materials Letters, 33(1997), p.77.
(58) J.P. Chang, H.W. Krautter, W. Zhu, R.L. Opila, and C.S. Pai,“
Integration of fluorinated amorphous carbon as low-dielectric
constant insulator: Effects of heating and deposition of
tantalum nitride”, J. Vac. Sci. Technol. A, 17(5)(1999), p.2969.
(59) S. Sasaki, and S. Nishi, Synthesis of fluorinated polyimides In: M.K.
Ghosh and K.L. Mittal, editors, Polyimides: fundamentals and
appli-cations. New York: Marcel Dekker, (1996), p.71.
(60) 張鼎張, 劉韋志,“極大型積體電路之低介電常數材料應用及
技術”, 電子月刊, 5(6)(1999), p.105 ~ p.116.
(61) D.T. Hsu, F.G. Shi, S. Lopatin, Y. Shacham-Diamand, B. Zhao, M.
Brongo, and P.K. Vasudev,“Change in chemical state of
fluorinated polyimides after the electroless Cu deposition
solution treatment”, Journal of Materials Science Letters,18
(1999), p.1465 ~ p.1467.
(62) A.J. Beuhler, D.A. Wargowski, K.D. Singer, and T. Kowalczyk,
“Fabrication of Low Loss Polyimide Optical Waveguides
Using Thin-Film Multichip Module Process Technology”,
IEEE Transactions on Components, and Manufacturing
Technology-Part B, 18(1995), p.232.
(63) M. Eashoo, L.J. Buckley, and K.ST. Clair,“Fibers from a Low
Dielectric Constant Fluorinated Polyimide: Solution Spinning
and Morphology Control”, Journal of Polymer Science: Part B:
Polymer Physics, 35(1997), p.173 ~ p.185.
(64) N.H. Hendricks, K.S.Y. Lau, A.R. Smith, and W.B. Wan,
“Synthesis and characterization of fluorinated poly(arylethers):
Organic polymers for IC IMD.”, Low-Dielectric Constant
Materials-Synthesis and Appli-cations in Microelectronics
Symposium Mater. Res. Soc., 385(1995), p.59 ~ p.70.
(65) R.A. Kirchhoff, C.E. Baker, J.A. Gilpin, S.F. Hahn, and A.K.
Schrock,“Benzocyclobutenes in polymer synthesis”, 18th
International SAMPE Technical Conference, 7-9(1986), p.478.
(66) R.A. Kirchhoff, C.J. Carriere, K.J. Bruza, N.G. Rondan, and R.L.
Sammler,“Benzocyclobutenes: A new class of high
Performance polymers”, J. Macromol. Sci.- Chem., A28(11 & 12)
(1991), p.1079 ~ p.1113.
(67) R.A. Kirchhoff, and K.J. Bruza, Adv. Polymer Sci., 117(1994), p.1.
(68) P.E. Garrou, W.B. Rogers, D.M. Scheck, A.J.G. Strandjord, Y. Ida,
and K. Ohba,“Stress Buffer and Passivation Process for Si
and GaAs IC’s and Passive Components Using Photosensitive
BCB: Process Technology and Reliability Data”, IEEE
Transcations on Advanced Packaging, 22(3)(1999), p.487 ~ p.498.
(69) A.J.G. Strandjord, D.M. Scheck, S.R. Kisting, W.B. Rogers, P.E.
Garrou, Y. Ida, and S.L. Cummings,“Process Optimization and
Systems Integration of a Copper/Photosensitive
Benzocyclobutene MCM-D: Dielectric Processing,
Metallization, Solder Bumping, Device Assem-bly and Tesing”,
The International Society for Hybrid Microelectro-nics, (1996),
p.260 ~ p.280.
(70) D.A. Babb, D.W.Jr. Smith, S.J. Martin, and J.P. Godschalx
(Inventors), World Patent WO 97/10193, The Dow Chemical
Company, March 20, (1997).
(71) G. Maier,“Low Dielectric Constant Polymers for
Microelectronics”, Prog. Polym. Sci., 26(2001), p.3 ~ p.65.
(72) Don Frye, Semicon. Korea, (2001), slide 3.
(73) S.J. Martin, J.P. Godschalx, M.E. Mills, E.O. Shaffer, and P.H.
Townsend,“Development of a low-dielectric constant
polymer for the fabrication of integrated circuit interconnect”,
Adv. Mater., 12(2000), p.23.
(74) 薛顯宗, 材料基礎實驗(一), (1996), p.1 ~ p.3.
(75) 陳劉旺, 丁金超, 高分子加工, 高立圖書有限公司, (1996),
p.31 ~ p.35.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top