跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭治明
研究生(外文):Chih-Ming Cheng
論文名稱:V2O5/聚亞醯胺混成膜之製備及其特性研究
論文名稱(外文):Preparation and Characteristics Study of V2O5 / Polyimide Hybrid Film
指導教授:黃華宗
指導教授(外文):Wha-Tzong Whang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:66
中文關鍵詞:乙醯丙酮氧釩聚醯胺酸五氧化二釩混成膜
外文關鍵詞:Vanadiumoxy acetylacetonePolyimideV2O5Hybrid Film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文合成的兩系列V2O5/PI混成膜,分別由PMDA/ODA及ODPA/ODA形成聚醯胺酸溶液,再添加不同比例的乙醯丙酮氧釩於聚醯胺酸中,形成的乙醯丙酮氧釩/聚醯胺酸混合溶液再利用XRD圖譜,找出適當的製程溫度,為考量較佳的V2O5生成與高分子的成膜性情況下,以階段式升溫:100℃( 1hr)、150℃( 1hr)、200℃( 1hr)、300℃( 1hr)、350℃( 12hr或6hr)兩製程條件,將V2O5在低溫下燒結於聚亞醯胺中,形成V2O5/PI混成膜。
在兩系列混成膜樣品的IR圖譜均顯示,V2O5的特徵吸收(在1000cm-1及700~430cm-1)的強度,均會隨著製程溫度及時間和添加的乙醯丙酮金屬比例增加而增強,表示V2O5生成隨之增加。TGA分析均顯示,隨乙醯丙酮氧釩莫耳比增加,Td有下降趨勢,可能的原因為金屬化合物在聚亞醯胺中催化PI熱氧化裂解反應的發生,造成熱安定性下降。電性質方面,兩系列混成膜樣品之導電率均隨添加乙醯丙酮氧釩的莫耳比增加而提高,約為10-11~10-10 W-1 cm-1,較純PI提升了10~1000倍。在表面型態分析方面,兩系列混成膜樣品的橫截面(cross section)SEM圖顯示,在V2O5 /聚亞醯胺混成膜中粒徑大小隨著莫耳比增加而增大。

Two series of metal containing poly(amic acid)s, precusors of V2O5 / Polyimide hybrid films, were derived from pure PAAs and Vanadiumoxy acetylacetone. The pure PAAs were prepared with PMDA ( Pyromellitic dianhydride) and ODA(4,4'-diaminodiphenylether), or ODPA(4,4- oxydiphthalic anhydride) and ODA(4,4'-diaminodiphenylether). The metal-containing PAAs were converted to V2O5 / Polyimide hybrid films by step thermal imidization: at 100℃, 150℃, 200℃,and 300℃each for 1hr, and 350℃ for 6hr or 12hr. In these conditions, V2O5 could successfully be sintered in polyimides at low temperatures in one process. The V2O5 / Polyimide hybrid films were characterized with the X-ray diffraction spectrum (XRD).
In the two series of the hybrid films, IR figures showed the intensities of V2O5 vibration bands(1000cm-1and 700~430cm-1) enhanced with increasing process temperature, process time, and Vanadiumoxy acetylacetone contents. It represented the hybrid films having more crystalline V2O5 phase under these conditions. TGA profiles showed Tds decreased with increasing Vanadiumoxy acetylacetone contents. The results might be related to the metal oxide catalyzing the oxidative degradation reaction and decreasing the thermal stability of hybrid films. Conductivities of the hybrid films could be up to 10-11~10-10 W-1 cm-1, which were 1~3 orders higher than that of pure polyimide. SEM pictures of the hybrid films cross sections showed the metal oxide sizes increase with increasing Vanadiumoxy acetylacetone contents

中文摘要………………………………………………………………Ⅰ
英文摘要……………………………………………………………….Ⅱ
目錄……………………………………………………………………..Ⅳ
圖目錄…………………………………………………………………..Ⅵ
表目錄…………………………………………………………………..Ⅸ
第一章、導論……………………………………………………………1
1-1、 鋰離子二次電池組裝技術 .............................1
1-2、 聚亞醯胺簡介 .......................................4
1-3、 研究動機 ...........................................6
第二章 文獻與理論回顧………………………………………………..7
2-1、聚亞醯胺 .............................................7
2-1.1、熱亞醯胺化的反應機制 ...............................7
2-1.2、影響聚醯胺酸分子量的因素 ...........................8
2-1.3、聚亞醯胺的製備 ....................................10
2-2、V2O5正極材料 ........................................12
2-2.1、V2O5材料簡介 ......................................12
2-2.2、V2O5正極材料之製備 ................................13
2-3、溶膠凝膠法合成的優點 ................................14
第三章、實驗方法………………………………………………………16
3-1、實驗儀器 ............................................16
3-2、實驗藥品及器材 ......................................17
3-3、實驗步驟 ............................................19
3-3.1、藥品純化 ..........................................19
3-3.2、聚醯胺酸的合成 ....................................19
3-3.3、乙醯丙酮氧釩 / 聚醯胺酸溶液的製備 .................19
3-3.4、聚亞醯胺薄膜製備 ..................................20
3-3.5、兩系列合成表 ......................................21
3-4、性質測試 ............................................22
3-4.1、X光繞射分析 .......................................22
3-4.2、傅氏紅外光譜儀(FTIR)分析 ..........................23
3-4.3、熱重分析儀(TGA)之分析 .............................23
3-4.4、導電性量測 ........................................23
3-4.5、掃描式電子顯微鏡分析(SEM) .........................24
3-5、實驗合成圖 ..........................................25
3-6、實驗流程圖 ..........................................26
第四章、結果與討論……………………………………………………27
4-1、V2O5 /聚亞醯胺混成膜的升溫條件 ......................27
4-1.1、PMDA混成膜系列 ....................................29
4-1.2、ODPA混成膜系列 ....................................36
4-2、V2O5/聚亞醯胺的鑑定 .................................40
4-3、熱安定性探討 ........................................47
4-4、導電率量測 ..........................................52
4-5、表面型態分析 ........................................58
第五章、結論…………………………………………………………..62
第六章、參考文獻……………………………………………………..64

[1] 楊模樺, 工業材料, 158, 141 (2000).
[2] M. Winter, J. O. Besenhard, M. E. Spahr, Adv. Mater., 10, 725 (1998)
[3] K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mat. Res. Bull., 15, 783 (1980)
[4] 王南欣,工業材料, 158, 132 (2000)
[5] E. Potiron, A. Verbaere, Y. Piffard, D. Guyomard, Electrochim. Acta, 45, 197 (1999)
[6] M. K. Ghosh, K.L. Mittal, “Polyimide.. Fundamentals and Applications”, Marcel Dekker, New York, 1996 .
[7] 金進興, 工業材料, 107, 128 (1996).
[8] J. A. Kreuz, A. L. Endrey, F.P. Gay, C.E. Sroog, J.Polym. Sci. A-1, 4, 2607 (1966).
[9] W. Volksen, Advances in Polymer Science, 117, 112 (1993).
[10] D. Wilson, H. D. Stenzenberger, P. M. Hergenrother, “Polyimides”, Blackie, Glasgow, 1990.
[11] C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edward, K. L. Olivier, J. Polym. Sci. A-3, 1373 (1965).
[12] V. M. Svetlichnyi, K. K. Kalnin’sh, V. V. Kurdryavtsev, M. M. Koton, Dokl. Akad. Nauk SSSR ( Eng.Transl. ), 237, 63 (1977).
[13] M.-J. Brekner, C. Feger, J. Polym.Sci., Polym. Chem. Ed., 25, 2005 (1987).
[14] 沈志鴻,王天佑,陳政琪,劉如熹, Chemistry, 57, 151 (1999)
[15] G. Brauer, “Handbook of Preparative Inorganic Chemistry”, Academic Press, New York, 1965.
[16] K. Adhikary, S. Kikkawa, Solid State Ionics, 99, 53 (1997)
[17] E. Potiron, A. Verbaere, Y. Piffard, D. Guyomard, Electrochim. Acta, 45, 197 (1999)
[18] E. Andrukaitis, J. Power Sources, 43-44, 603 (1993)
[19] D. W. Murphy, P. A. Christran, F. J. Disalvo, J. N. Carides, J. V. Waszczak, J. Electrochem. Soc., 128, 2053 (1981)
[20] J. Livage, Chem. Mater., 3, 578 (1991)
[21] J. Livage, Solid State Ionics, 86, 935 (1996)
[22] C. J. Brinker, G. W. Scherer, “Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing”, Academic Press, Inc., Boston, 1990.
[23] M. M. Ellison, L.T. Taylor, Chem. Mater., 6, 990 (1994)
[24] Ozer N, THIN SOLID FILMS, 305, 80 (1997)
[25] H. Dislich, J. Non-Cryst. Solids, 73, 599 (1985)
[26] J.H. Harreld, B. Dunn, L.F. Nazar, Int. J. Inorg. Mater., 1, 135 (1999)
[27] A. V. Murugan, B. B. Kale, C. W. Kwon, G Campet, K. Vijayamohanan, J. Matter. Chem., 11, 2470 (2001)
[28] T. Sawada, S. Ando, Chem. Mater., 10, 3368 (1998)
[29] J. D. Rancourt, L. T. Taylor, Macromolecules, 20, 790 (1987).
[30] J. D. Rancourt, R. K. Boggess, L. S. Horning, L. T. Taylor, J. Polym.Sci., Polym. Chem., 25, 685 (1987).
[31] R. A. Dine-Hart, W. W. Wright, Makromol. Chem., 153, 237 (1972).
[32] M. I. Bessonov, M.M. Koton, V. V. Kudryavtsev, L. A. Laius, “ Polyimide: Thermally Stable Polymers”, Consultants Bureau, New York, 1987.
[33] H. P. Klug, L. E. Alexander, “X-ary Diffraction Procedures for Polycrystalline and Amorphous Materials”, John Wiley & Sons, New York, 1962

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top