跳到主要內容

臺灣博碩士論文加值系統

(75.101.211.110) 您好!臺灣時間:2022/01/26 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉書宏
研究生(外文):Sue-Hong Liu
論文名稱:由電流驅使之錫晶鬚成長之研究
論文名稱(外文):Tin Whisker Growth Driven by Electrical Currents
指導教授:陳智陳智引用關係
指導教授(外文):Chih Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:77
中文關鍵詞:錫晶鬚電遷移電子構裝無鉛銲錫
外文關鍵詞:Tin WhiskerElectromigrationElectronic PackagingLead-free Solder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
在微電子構裝工業中,近來因為環境保護的考量,所以使得無鉛銲錫逐漸地取代傳統的有鉛銲錫。而在大部份的無鉛銲料中,錫的成分比例皆超過95%。因此由電流驅使的錫晶鬚之成長將成為無鉛銲料構裝中最重要的研究課題之一。本論文中,利用5000Å的錫條在700 Å的鈦膜之上的Blech構造來研究純錫的電遷移效應。所使用的電流密度為7.5 ×104 A/cm2及1.5 ×105 A/cm2。經過通電後我們觀察到在陽極部份產生錫晶鬚及突出物,陰極部份則產生孔洞。此外,為了研究溫度的效應,試片在通電時分別置於室溫及50°C下。在室溫下,電流密度1.5 ×105 A/cm2時錫晶鬚的成長速率大約為3 Å/sec,在50°C下則為7.7 Å/sec。在電流密度7.5 ×104 A/cm2室溫下時速率為0.4 Å/sec。本論文中,錫晶鬚成長速率與通電的時間及電流密度及通電時環境溫度成函數關係,由電流驅使的錫晶鬚之成長機制將被討論。

Lead-free solders are replacing traditional SnPb solders gradually due to environmental concern in microelectronic packaging industry. In most lead-free solders, tin is the richest element and weighs over 95% of the solders. Therefore, tin whisker growth driven by electrical currents would be one of the most crucial reliability issues in lead-free microelectronic packaging.
Blech structure is used to investigate the electromigration effect in pure tin, in which 5000 Å tin strips are on 700 Å titanium films. Current density of 7.5 ×104 A/cm2 and 1.5 ×105 A/cm2 are applied in the Blech samples. We observed tin whiskers and hillocks on the anode side and voids on the cathode side. The average growth rate of tin whiskers is measured as a function of current density. Also, to investigate temperature effect, samples are stressed at room temperature and 50°C respectively. The average growth rate is about 3 Å/sec at the current densities 1.5 ×105A/cm2 at room temperature, and the rate is 7.7 Å/sec at 50°C. The rate is 0.4 Å/sec at the current densities of 7.5 ×104 A/cm2. The average growth rate of tin whisker as a function of time, current density and temperature are presented in this thesis. The mechanism of tin whisker growth driven by electrical force is discussed.

Table of Contents
摘要 II
Abstract III
誌謝 IV
Table of Contents V
Figure Caption VII
List of Tables X
Chapter 1 Introduction 1
1.1 Phenomenon of Whisker Growth 1
1.2 Theory of Electromigration 8
1.3 Motivation 12
Chapter 2 Experimental Procedures 15
2.1 Fabrication of Blech Structure 15
2.2 Condition of Applied Currents 21
2.3 Analysis Techniques 22
2.4 Measurement of Whisker Length 23
Chapter 3 Results 28
3.1 Electromigration at Room Temperature under Current Density of 1.5 × 105 A/cm2 28
3.1.1 Whisker Growth at the Anode 28
3.1.2 Void Formation at the Cathode 36
3.2 Current Density Effect: Electromigration at Room Temperature under the Current Density of 7.5×104A/cm2 42
3.2.1 Whisker Growth at the Anode 42
3.2.2 Voids Formation at the Cathode 46
3.3 Temperature Effect: Electromigration at 50°C under at Current Density of 1.5 ×105 A/cm2 50
3.3.1 Whisker Growth at the Anode 50
3.3.2 Voids Formation at the Cathode 55
Chapter 4 Discussion 61
4.1 Mechanism of Whisker Growth Driven by Electrical Currents 61
4.2 Bubbles near Cathode 63
4.3 Fine Whisker near Cathode 66
4.4 Critical Length 67
4.5 Lamellar-Type Whisker 69
4.6 Thermal effect 71
Chapter 5 Conclusions 73
Chapter 6 Future Works 74
References 75

References
1. K. N. Tu, “Irreversible process of spontaneous whisker growth in bimetallic Cu-Sn thin film reactions”, Phys. Rev. B 49 (3) (1992) 2030-2034.
2. J. Glazer, "Metallurgy of low temperature lead-free solders for electronic assembly", Int. Mater. Rev. 40 (2) (1995) 65-93.
3. J. H. Lau, “Flip Chip Technologies “ McGraw-Hill, New York, 1996.
4. Rob Schetty, “Minimization of tin whisker formation for lead-free electronic finishing”, Circuit World 27 (2) (2001) 17-20.
5. Tomoyuki Kakeshita, Ken’ichi Shimizu, Ryusuke Kawanaka, Tomoharu Hasegawa, “Grain size effect of electro-plated tin coatings on whisker growth”, Journal of Materials Science 17 (1982) 2560-2566.
6. K. Zeng and K. N. Tu , “Reliability Issues of Pb-free Solder Joints in Electronic Packaging Technology”, to be published.
7. International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, (CA 1999)
8. C. Y. Liu, C. Chen, and K. N. Tu, "Electromigration in Sn—Pb solder strips as a function of alloy composition", J. Appl. Phys. 88 (10) (2000) 5703-5709.
9. George T. T. Sheng , C. F. Hu, W. J. Choi, K. N. Tu, Y. Y. Bong and Luu Nguyen, “Tin Whiskers Studied by Focused Ion Beam Imaging and Transmission Electron Microscopy” to be published in 2002.
10. B. -Z. Lee and D. N. Lee, "Spontaneous growth mechanism of tin whiskers", Acta Mater. 46 (10) (1998) 3701-3714.
11. R. Kawanaka, K. Fujiwara, S. Nango, and T. Hasegawa, "Influence of impurities on the growth of tin whiskers", Japan. J. Appl. Phys. Part I 22 (6) (1983) 917-922.
12. N. Furuta and K. Hamamura, "Growth mechanism of proper tin-whisker", Japan J. Appl. Phys. 8 (12) (1969) 1404-1410.
13. R. Kawanaka, K. Fujiwara, S. Nango, and T. Hasegawa, Japan. J. Appl. Phys. Part I, 22 (6), 917 (1983).
14. H. B. Huntington and A.R. Grone, “Current-Induced Masker Motion in Gold Wires,” J. Phy. & Chem. Solids, 20, 76 (1961)
15. K. N. Tu, J. W. Mayer and L.C. Feldman, “Electronic Thin Film Science,” Macmillan, New York (1992)
16. I. A. Blech, "Electromigration in thin aluminium films on titanium nitride", J. Appl. Phys. 47 (4) (1976) 1203-1208.
17. K. N. Tu, "Electromigration in stressed thin films", Phys. Rev. B 45 (3) (1992) 1409-1413.
18. K. N. Tu and L. M. Brown “Grain boundary electromigration and creep”, Materials Chemistry and Physics, 32 (1992) 49-55.
19. K. N. Tu ”Cu/Sn interfacial reactions: thin-film case verse bulk case”Materials Chemistry and physics 46 (1996) 217~223.
20. Q. T. Huynh, C. Y. Liu, Chih Chen and K. N. Tu, “ Electromigration in Eutectic PbSn solder stressed between Cu Electrodes,” J. Apply .Phys. 89, 4332-4335 (2001)
21. T. Y. Lee and K. N. Tu, “Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization.” J. Appl. Phys. 9 (90) (2001) 4502-4508.
22. A. Khosla and H. B. Huntington, “ Electromigration in Tin Single Crystals” J. Phys. Chem. Solids. Vol 36, (1975) pp. 395-399.
23. H. M. Breitling and R. E. Hummel, “ Electromigration in Thin Silver, Cooper, Gold, Indium, Tin, Lead and Magnesium Films “ Phys. Chem. Solids, Vol. 33, (1972) pp. 845-852.
24. K. N. Tu, C. C. Yeh, C. Y. Liu, and Chih Chen, “Effect of current crowding on vacancy diffusion and void formation in electromigration”, Applied Physics Letters, 76 (8) (2000) 988-990.
25. K. N. Tu “Response to “Comment on ‘Effect of current crowding on vacancy diffusion and void formation in electromigration’ ” “Applied Physics Letters, 79 (7) (2001) 1063
26. Aris Christou “Electromigration and Electronic Device Degradation ” CALCE Electronic Packaging Research Center, University of Maryland (1994)
27. Robert E. Reed-Hill, Reza Abbaschian “Physical Metallurgy Principles,” pp.540, PWS, Boston (1994)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top