跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾利群
研究生(外文):Li-Chun Chung
論文名稱:SbTe結晶促進層對GeSbTe碟片結晶行為與性質的影響
論文名稱(外文):Effects of the SbTe crystallization-induced layer on crystallization behaviors and properties of the GeSbTe disks
指導教授:郭正次
指導教授(外文):Cheng-Tzu Kuo
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:80
中文關鍵詞:鍺銻諦合金結晶促進層相變化光碟差式掃描熱量分析儀
外文關鍵詞:GeSbTe alloyinitialization-induced layerDVD-RAMDSC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
傳統相變化光碟都是經由濺鍍製程來製作,其缺點是在光碟可以做為讀寫之用前需做初始化過程使得光碟中之記錄層由非晶相變成結晶相。為了要發展免初始化的製程,SbTe合金材料用來添加在記錄層的上方或下方當做添加層以研究對記錄層結晶行為之影響。
本研究是利用六靶磁控濺鍍機以Sb40.6Te59.4 和Ge21.9Sb23.1Te55.0為靶材通以氬氣為輸送氣體分別濺鍍添加層及記錄層。這種層狀結構在不同基板(Si,PC,銅網)上鍍製以觀測其反射率(n & k分析儀),晶體結構(XRD,ED),非晶/結晶轉換溫度(DSC),表面形貌(SEM)和微觀結構(TEM)。也製作完整光碟片針對不同的結晶促進層厚度對反射率,抖動值(jitter) ,調變率(modulation) ,信號雜訊比(CNR)與J-M-A速率方程式之“q”參數的影響。
實驗結果顯示上結晶促進層對記錄層的結晶行為沒有顯著影響,SbTe愈厚會造成反射率愈高。結晶促進層之作用基本上是誘發記錄層由SbTe之(100)面開始結晶。除了兩種晶格之非契合性很小之外,這是由於SbTe的結晶溫度比記錄層低 85℃。上述結果跟J-M-A結晶動力學分析碟片由非晶轉變成結晶的主要速率控制方式在SbTe厚度超過15 nm以上時是由成核所主導(q = 2.53 ~ 2.79 > 2.5)。
有關SbTe膜層對碟片性質的影響,其結果顯示碟片中之下SbTe層厚度20 nm 和 13 nm分別是反射率和調變率有最大值。換言之,在GeSbTe厚度是 10 nm下,SbTe輔助碟片之下結晶促進層厚度介於13 nm到 20 nm間顯示有最佳反射率和調變率的組合。結果亦指出SbTe輔助光碟片之結晶時間在70 ns以內,比傳統商用碟片之結晶時間100 ns~120 ns短很多,顯示具備有較高的記錄速度的可能性。這製程最重要的優點是SbTe輔助光碟片不需要初始化的過程,因為其初鍍完成的光碟片可以直接做寫入和擦拭的動作。

The conventional phase-change DVD-RAM is generally fabricated by the sputtering process, which has a drawback of requiring an initialization process to change the as-deposited recording layer in the disk from amorphous to crystalline phases, before the disk can be used for reading or writing. In order to develop an initialization-free process, the SbTe alloy was used as an additional layer below or above the recording GeSbTe layer to study its effect on crystallization behaviors of the recording layer. The additional and recording layers were deposited by a six-gun sputter with Sb40.6Te59.4 and Ge21.9Sb23.1Te55.0 as targets and Ar as carrier gas. The layer structures were deposited on substrates of Si wafer, PC board, Cu-mesh to examine their reflectivity (n & k analyzer), crystal structure (XRD, ED), amorphous-to-crystallization transformation (DSC) and microstructure (TEM). The complete disk specimens were also fabricated to examine the effects of thickness of SbTe crystallization-induced layer on reflectivity, jitter, modulation, carrier signal to noise ratio (CNR) and parameter “q” in J-M-A rate equation.
The results show that upper SbTe layer has no significant effect on crystallization behavior of the recording layer. The greater thickness of the SbTe layer shows a greater reflectivity. Effect of SbTe layer is essentially to induce crystallization of GeSbTe recording layer from (110) plane of SbTe crystals. This is due to the fact that the crystallization temperature of SbTe crystal is 85℃ below that of GeSbTe crystal, in addition to a lower lattice mismatch between two crystals. This is in agreement with the J-M-A kinetic analyses that the rate controlling step for amorphous-crystal transformation in disk specimens with SbTe layer over 15 nm thickness is mainly governed by nucleation with q = 2.53 ~ 2.79 > 2.5 in J-M-A equation.
Regarding the effects of SbTe layer on disk properties, the results show that the reflectivity and modulation of the disks depict a maximum value at the lower SbTe layer thicknesses 20 nm and 13 nm, respectively. In other words, under the 10 nm GeSbTe layer thickness, the SbTe-assisted disks with lower SbTe layer thickness between 13 and 20 nm show the best combination of reflectivity and modulation. The results also indicate that the crystallization time of the SbTe-assisted disks is below 70 ns, which is much lower than 100 ~ 120 ns for commercial disks, implying a higher writing speed is possible. The most important advantage of this process is that the SbTe-assisted disks are required no initialization process, because the as-deposited disks can be directly written on and erased off.

中文摘要 i
英文摘要 iii
致謝 v
目錄 vi
符號說明 ix
表目錄 x
圖目錄 xi
第一章 前言 1
1.1光碟系統發展簡介 1
1.2研究目的 3
第二章 理論基礎與文獻回顧 4
2.1相變化型記錄材料之記錄原理 4
2.2相變化型記錄材料之種類與特性 5
2.3可重複讀寫相變化型記錄媒體之結構與特性 12
2.4 可重複讀寫相變化型記錄媒體各層作用 13
2.4.1介電層材料主要的要求和作用 13
2.4.2記錄層材料主要的要求和作用 14
2.4.3反射層材料主要的要求和作用 15
2.5最近發展狀況 16
2.6結晶成長動力學 19
2.7光碟性質量測系統 21
2.8光碟測試數據說明 22
第三章 實驗方法 24
3.1實驗構想與材料的選用 24
3.2 基板與原料選取 24
3.3濺鍍系統 25
3.4薄膜濺鍍步驟 27
3.5光碟量測系統 28
3.5.1光碟測試系統(動態測試儀) 28
3.5.2 靜態測試儀 28
3.6薄膜特性量測 28
3.6.1膜厚量測儀 29
3.6.2.TEM,SEM形貌及微結構分析 29
3.6.3 差式掃描熱量分析儀(DSC) 29
3.6.4 AES表面及縱深分析 30
3.6.5 XRD晶體結構分析 31
3.6.6薄膜熱處理 32
3.6.7 光學性質n & k 分析 32
第四章 結果與討論 33
4.1 濺鍍功率對記錄層和結晶促進層成分的影響 33
4.2 結晶促進層厚度對初鍍膜反射率的影響 33
4.3 上下結晶促進層對記錄層結晶行為的影響 34
4.4 結晶促進層及記錄層的熱性質 35
4.5 記錄層和結晶促進層初鍍膜在退火前後的TEM分析結果 36
4.6 初鍍光碟片之Auger縱深分析結果 37
4.7 初鍍光碟片寫入後記錄點之SEM形貌 38
4.8 上下結晶促進層厚度對光碟片反射率的影響 38
4.9 結晶促進層厚度對光碟片靜態寫入與擦拭的動力學分析結果 40
4.10下結晶促進層厚度對光碟片信號雜訊比的影響 43
4.11下結晶促進層厚度對光碟片jitter的影響 44
第五章 結論 45
第六章 未來展望 47
參考文獻 48

1. Chen, M., K.A. Rubin, V. Marrello, U.G. Gerber and V.B. Jipson, “Reversibility and stability of Te alloys for optical data storage applications”, Appl. Phys. Lett. 48(6) (1985) 734.
2. Chen , M., K.A. Rubin and R.W. Barton, "Compound Materials for Reversible Phase-Change Optical Data Storage", Appl. Phys. Lett. 49 (1986) 502.
3. Coombs, J.H., A.P.J.M. Jongenelis, W. van Es-Spiekaam, B.A.J. Jacobs and Z.P. Cai, SPIE Proc. 2338 (1994) 94.
4. Feinleib, J., J. Deneufville, S.C. moss and S.R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors”, Appl. Phys. Lett. 18,6(1971) 254.
5. Fujimori, S., S. Yagi, H. Yamazaki, and N. Funakoshi, J. Appl. Phys. 64 (1988) 1000
6. Hirotsune, A., Y. Miyauchi , and M. Terao, "New phase-change rewritable optical recording film having well suppressed material flow for repeated rewriting", Appl. Phys. Lett. 66 (1995) 2312.
7. Hirotsune, A., Y. Miyauchi, and M.Terao, Jpn. J. Appl. Phys. 35 ( 1996) 346
8. Horie, M. and T. Ohno, "Durability of Dielectric Protective Layers against Repetitious Thermal Stress in Phase-Change Optical Recording", Thin Solid Films. 278 (1996) 74.
9. liljima, T., T. Tanabe, N. Funakoshi, "Overwrite Characteristics in Phase Change Optical Disk", Jpn. J. Appl. Phys. 28 (1989) 129.
10. Iwasaki, H., Y. Ide and M. Harigaya, “Completely erasable phase change optical disk”, Jpn. J. Appl. Phys. 31 (1992) 461.
11. Iwasaki, H.,M.Harigaya, Nonoyama, Y. Ka-eyama, M. Takahashi, K. Yamada, H. Deguchi, and Y. Ide, Jpn. J. Appl. Phys. 32(1993) 5241.
12. Johnson, W. A.,and K. F. Mehl, Trans. Am. Inst. Mining Met. Engns. 135 (1981) 315.
13. Jeong, T.H., M.R. Kim, H. Seo, S. J. Kim and S. Y. Kim, J. Appl. Phys. 86 (1999) 774.
14. Jeong, T.H., H. C. Yeon, Jpn. J. Appl. Phys. 39 (2000) 741.
15. Jiang, F. and M. Okuda, “The effect of doping on the erasure speed and stability of reversible phase change optical recording films”, Jpn. J. Appl. Phys. 30 (1991) 97.
16. Jongenelis, A.P.J.M., J.H. Coombs, W. van Es-Spiekman and B.A.J. Jacobs, "Laser-induced crystallization phenomena in GeTe-based alloys. III. GeTeSe alloys for a CD compatible erasable disk ",J. Appl. Phys. 79,11(1996) 8349.
17. Khulbe, Pramod. K. , “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films”, J.A.P . 88(2000) 3926.
18. Kojima, R. ,S. Okabayashi, T. Kashihara, K. Horai, T. Matsunaga, E. Ohno, N. Yamada, and T. Ohta, "Nitrogen doping effect on phase change opticaldisks", Jpn. J. Appl. Phys. 37 (1998)2098.
19. Maeda, Y., H. Andoh, I. Ikuta, and I-i. Minemura, J. Appl. Phys. 64 (1988)
20. MIAO, X. S., “New Additional Layer to Realize Initialization-free Functionfor Digital Versatile Disk-Random Access Memory Disk” , Jpn. J. Appl. Phys. 39 (2000) 729
21. MIAO, X. S., “New Approach to Initialization-Free Phase-Change Optical Disk”, Jpn. J. Appl. Phys. 41 (2002) 1679.
22. Nobukuni, N. ,M. Takashima, T. Ohno and M. Horie, "Microstructural Changes in GeSbTe Film During Repetitious Overwriting in Phase-Change Optical Recording", J. Appl. Phys. 78 (1995) 6980.
23. Nishiuchi,K., N. Akahira, E. Ohno, ,Jpn.J.Appl.Phys.31(1992)653
24. Ohshima, N., J. Appl. Phys. 79, 11 (1996) 8357.
25. Ohta, T., K. Nishiuchi, ”Overview and the Future of Phase-Change Optical Disk Technology”, Jpn. J. Appl. Phys. 39 (2000) 770.
26. Okude, M., H. Naito and T. Matsushita, “Discussion on mechanism of reversible phase change”, Jpn. J. Appl. Phys. 131 (1992) 466.
27. Ovshinsky, S.R., "Optically induced phase changes in amorphous materials ", J. Non-crys. Solids. 141 (1992) 200.
28. Ovshinsky, S.R., "Reversible electrical switching phenomena in disordered structures", Phys. Rev. Lett. 21 (1968) 1450.
29. Roth, J. P., “Rewritable optical storage technology”, Meckler, Westport, London, 1991, chapter 1.
30. Seo, Hun ., “nvestigation of Crystallization Behavior of Sputter-Deposited Nitrogen-Doped Amorphous Ge2Sb2Te5 Thin Films” , Jpn. J. Appl. Phys. 39 (2000) 745.
31. Sheila, Aparna C., T. E. Schlesinger”Study of Overwrite Jitter in Phase Change Optical Recording at High Velocities” Jpn. J. Appl. Phys.40 (2001) 3220.
32. Shi, L.P., T.C. Chong, P. K. Tan, X. S. Miao, J. J. Ho and Y. J. Wu, Jpn. J. Appl. Phys. 39 (2000) 733.
33. Shi, L.P., T.C. Chong, P. K. Tan, X. S. Miao, et al., Jpn. J. Appl. Phys. 38 (1999) 1645.
34. Stuke,J., J. Non-Cryst. Solids, 4(1970)1.
35. Suzuki, M., K. Furuya, K. Nishimura, K. Mori, and I.Morimoto, SPIEProc. 1316(1990) 374.
36. Takenaga, M., N. Yamada, K. Nishiuchi, N. Akahiro, T. Ohta, S. Nakamura and T. Yamashida, “TeOx thin films for an optical disc memory”, J. Appl. Phys. 54,9(1983) 5376.
37. Tanabe, T., T. Ura and M. Yamamoto, Jpn. J. Appl. Phys. 39 (2000) 920.
38. Terris, B. D. H. J. Mamin and D. Ruger, "Near-field optical data storage",Appl. Phys. Lett. 68 (1996) 141.
39. Tieke, B., M. Dekeer, et al., Jpn. J. Appl.Phys. 39 (2000) 762.
40. Tominaga, J.,T. Handa, S. Haratani, and S. Takayama, Jpn. J. Appl. Phys. 32 (1993) 1980.
41. Tominaga, J., Nakano,and Atoda,Appl.phys.lett.73 (1998) 2078.
42. Tominaga, J.,Hiroshi Fuji ,“Oxygen Doping effects on super-resolution scattering-mode near-field optical data storage.”, Jpn. J. Appl. Phys. 39 (2000) 2639.
43. Trappe, C., B. Bechevet, Jpn. J. Appl. Phys. 39 (2000) 766.
44. Uchino, K., K. Takada, T. Ohno, H. Yoshida and Y. Kobayashi, Jpn. J. Appl. Phys. 32 (1993) 5354.
45. Yamada, N. ,E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, "Rapid-phase transitions of GeTe-Sb2 Te3 pseudobinary amorphous thin films for an optical disk memory" ,J. Appl. Phys. 69 (1991)2849.
46. Young, R.T., D. Strand, J. Gonzalez-Hernandez and S.R. Ovshinsky, “Effects of transition-metal elements on Te alloys for reversible optical data storage”, J. Appl. Phys. 60 ,12(1986) 4319.
47. 王東釧, 王威翔, 工業材料144 (1998) 121
48. 蔡定平”近場光學記錄的新發展(上)” 光訊,第74期,11-14頁(1998)
49. 吳汀淏”添加Ag對Ge2Sb2Te5薄膜光學性質及微結構之影響”,臺灣大學/材料科學與工程學研究所,碩士論文(2000)
50. 蔡永誠”相變化可擦拭性光碟研究” 清華大學/材料科學工程研究所,碩士論文(1998)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top