跳到主要內容

臺灣博碩士論文加值系統

(54.91.62.236) 您好!臺灣時間:2022/01/17 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張惠林
研究生(外文):Hui Lin Chang
論文名稱:含Si,N之碳基晶體及奈米結構材料之合成及其鑑定
論文名稱(外文):Synthesis and Characterization of Si, N Containing Carbon-Based Crystals and Their Nanostructured Materials
指導教授:郭正次
指導教授(外文):Cheng Tzu Kuo
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:200
中文關鍵詞:奈米結構奈米碳管SiCN晶體微波電漿化學氣相沉積法化學氣相沉積法
外文關鍵詞:Nanostructured materialcarbon nanotubeSiCN crystalMPCVDCVD
相關次數:
  • 被引用被引用:7
  • 點閱點閱:509
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
碳基底材料的合成與開發,在學術界與工業界,已發展了數十年;例如人工鑽石,超硬材料C3N4,Si-C-N的合成,及碳基奈米材料等。合成這些材料,其實可以藉由同一機台,藉由製程參數的改變來達成。但現今的研究,對於合成條件,成長機制與生成產物間的連結仍嫌缺乏,且尚未成功。因此,本篇論文旨在使用單一微波電漿化學氣相沉積系統,藉由製程參數的改變,來合成各種不同的碳基底材料,包括:Si-C-N晶體薄膜,Si-C-N奈米管,碳奈米管,和尖錐狀碳奈米棒等奈米結構。而製程參數與合成產物間的關係,可以歸納為èSi-C-N晶體薄膜:有/無觸媒輔助,CH4/N2混合氣體與外加固體矽源。Si-C-N奈米管:觸媒輔助,CH4/N2/H2混合氣體與外加固體矽源。碳奈米管與碳奈米棒:觸媒輔助,CH4與H2,N2等混合氣體。以上這些製程條件與合成產物間的關係,可以簡示於一張製程摘要地圖,(頁數: ix)。
在合成Si-C-N晶體部份,比較了三種不同條件對於形成Si-C-N晶體的影響。條件1 (路徑j於摘要地圖) 是探討Si-C-N薄膜沉積於不同緩衝層上,結果顯示薄膜的成核與性質可藉由外加緩衝層來操控改變。條件2與條件3 (路徑k於摘要地圖) 為探討並比較外加固體源 (鍍鈷矽棒) 於不同添加時機,對於Si-C-N薄膜組成,形貌,結構與性質的影響。條件2添加固體源的時機是在通入反應氣體前,即 “沉積前”。相對的,條件3則是在 “沉積前” 與 “沉積中” 都有添加外加固體源。
在Si-C-N奈米管合成部份,比較了Co 觸媒輔助成長Si-C-N奈米管 (路徑l於摘要地圖) 與Si-C-N晶體 (路徑j於摘要地圖)。對於沉積時間 (4小時) 能夠成長管狀形貌結構是相關於反應氣體中有無包含H2氣。H2氣可以延遲 “觸媒毒化” 效應,且可以維持管端在成長過程中開口狀態。
其它的碳奈米結構 (例如,觸媒輔助碳奈米管及碳奈米棒) 藉由製程參數的改變,成功的合成在圖案Si 晶圓與無圖案晶圓上 (路徑m,n,o於摘要地圖)。並探討了觸媒種類,合成氣體的比例與種類,緩衝層,溫度等對碳奈米結構形貌,結構,性質與成長機制的影響。而選擇性碳奈米管則是沉積於 (a) 平行Fe—披覆SiO2線陣列,(b) CoSix—披覆SiO2孔洞陣列。這是一個新奇並可與現有Si電子元件相容的方法。此外,提出了單顆觸媒成長多支多管壁奈米管的機制。是相關於觸媒經氫活化的形貌與碳奈米管的沉積溫度。提供了不同的觀點來解釋觸媒輔助—多管壁碳奈米管的成長機制。
關於不同的碳基底晶體及其奈米結構間的連結可以歸納如下: (1) 外加固體矽源提供了Si-C-N晶體薄膜/奈米管結構中Si的主要來源,雖然少部份的矽會是來自於Si基材,但藉由電漿中解離的矽源,活性較高,有較多機會參與反應。(2) 觸媒的添加輔助了管狀形貌或是尖錐柱狀形貌的生成,但觸媒在Si-C-N晶體及Si-C-N奈米結構的作用是不同的,因為有添加外加矽源的條件下,若無適量的H2氣體環境,管狀的結構並無法藉由觸媒而生成,取而代之的是Si-C-N晶體結構。觸媒對於形成Si-C-N晶體結構提供了成核點,並增加了沉積速率。相對的,形成Si-C-N奈米結構則是類似於vapor-liquid-solid成長模型,觸媒汲取了反應物並提供生成物的析出媒界。 (3) CH4與H2氣體的比例影響管狀或是實心晶體結構的形成,高比例的CH4/H2有助於C-sp2鍵結 (石墨結構) 的形成。相對的,低比例CH4/H2有助於C-sp3鍵結 (鑽石結構)。因此,在有催化劑的情形下與改變CH4/H2比例,碳原子環繞著催化劑析出,形成了中空管狀或是實心棒狀的結構。(4) N2氣體的添加,有助於形成竹節狀奈米結構。N2氣增加了石墨結構的彎曲應力。改變了石墨六角環晶格的晶體結構,部份晶格被五角環或是七角環形式的晶格所取代,造成了竹節狀奈米管的形成。
在性質分析結果顯示,Si-C-N晶體的硬度範圍藉於30 GPa ~ 57 GPa間,能隙藉於3.76 ~ 3.95 eV間。而在場效發射結果顯示,Si,N碳基底晶體及其奈米結構都具有不錯的場效發射性質。但是Si-C-N奈米管與碳奈米管比Si-C-N晶體的場效發射電流大了一個等級。在電場10 V/mm時,奈米管結構的發射電流密度 >0.03 A/cm2,而Si-C-N晶體則為 0.0025 A/cm2。因此碳基底晶體及其奈米結構預期將會是應用於場效發射顯示器的候選者。

Syntheses of carbon-based materials have been developing for many decades in both academic and industrial communities, such as, man-made diamonds, superhard C3N4 materials, Si-C-N crystals and other carbon-based nanostructured materials. However, researches so far have not successfully linked the growth mechanisms of various carbon-based materials deposited by different synthetic conditions and methods. In fact, a single machine could synthesize many of such materials. This dissertation aimed to study the linkages among various carbon-based materials synthesized on Si wafers under the same microwave plasma chemical vapor deposition (MPCVD) system, including Si-C-N crystalline films, Si-C-N nanotubes, carbon nanotubes (CNTs), conical carbon nanorods and other nanostructured materials. The process parameters can be divided into three groups according to the structures of the synthesized materials, i.e. Si-C-N crystalline films, nanotubes and other nanostructures. The main parameters include CH4/N2 gases, buffer layer application, additional Si source and its application timing for Si-C-N crystalline films; CH4/N2/H2 gases, catalyst application, additional Si source for Si-C-N nanotubes; CH4, N2, H2 gases and catalyst application for carbon nanotubes and carbon nanorods, as shown in a process abstract roadmap or figure, (page ix).
With regard to the synthesis of Si-C-N film, three conditions, namely conditions 1, 2 and 3 were compared. Under condition 1 (route j in abstract figure), the results reveal that formation and properties of Si-C-N films can be manipulated by applying seven different buffer layers. Conditions 2 and 3 (route k in abstract figure), it depicts that application timing of the additional solid source (Co-coated Si columns) can be used to vary the compositions, morphologies, structures and properties of Si-C-N films. Under condition 2, the solid sources were applied “before” film deposition. This condition applies the solid source to the substrate by H2 pretreatment. Under condition 3, the solid sources were applied both “before and during” film deposition.
By comparing the conditions of forming catalyst-assisted Si-C-N nanotubes with forming Si-C-N films (routes l and j in abstract figure), the formation of the tubular structure may be related to introduction of H2 gas during tubular deposition, which may delay the action of the so-called catalyst poisoning and keep the tube end open during growth.
Other nanostructured materials, e.g. catalyst-assisted CNTs and carbon nano-rods, were successfully synthesized on patterned and un-patterned Si wafers (routes m, n, o in abstract figure) by varying process parameters including catalyst materials, source gases, gas ratios, interlayers and deposition temperatures. The CNTs could be selectively deposited on the patterned wafers, including: (a) parallel Fe-coated line arrays, and (b) CoSix-coated hole arrays. This is a novel method that is compatible with Si microelectronic device manufacturing. Besides, many of the vertically-grown, dense MWCNTs are found to protrude from a single catalyst particle. This is believed to be associated with the lower temperatures in H2 reduction and CNTs deposition stages. The result also offers a different perspective on growth mechanism of the catalyst-assisted MWCNTs.
Regard to the linkages of forming various kinds of carbon-based crystals and nanostructured materials, the following conclusions can be drawn: (1) The additional solid Si sources mainly contribute the Si component of Si-C-N crystals and nanotubes. Although some Si could be derived from the Si substrate, the solid Si columns ionized by plasma are highly active to participate in the reaction. (2) The nano-sized catalysts promote the formations of tubular or rod morphology. The catalytic functions of the process environments without H2 gas differ from those with H2 gas. The catalysts are suggested to provide nucleation sites for Si-C-N crystal nucleation, and effectively reduce the energy of formation in the initial stage. The catalytic function is lost when the growing film covers the catalytic particle. In contrast, the role of the catalyst in forming Si-C-N tubes is similar to that described in the vapor-liquid-solid model. The tube grows by precipitating of graphite sheets from a super-saturated catalytic droplet. The formation of a curved graphite basal plane is energetically favorable, and so the tubular structure is formed. (3) The CH4/H2 ratio influences the formation of tubular and crystalline structures. A high CH4/H2 ratio favors the formation of C-sp2 bonding (graphite structure), whereas, a low CH4/H2 ratio favors the formation of C-sp3 bonding (diamond structure). Therefore, carbon atoms surround and precipitate from catalysts with different CH4/H2 ratios form hollow tubes or solid nano-rods. (4) N2 gas gives rise to bamboo-like CNTs. Introducing N atoms into the carbon nanotube structure may induce distortion; change the bonding to that of pentagonal, heptagonal or other crystal lattices, and increase bending stress.
Analysis results indicate that the nanohardness of Si-C-N crystals ranges from 30 GPa ~ 57 GPa; the energy gap ranges from 3.76 eV ~ 3.95 eV. The field emission results show that carbon-based crystals that contain Si and N, and their nanostructured materials exhibit good field emission properties. The emission currents of Si-C-N nanotubes or CNTs are at least one order of magnitude more than those of Si-C-N crystals at specific electric field intensity. At an electric field of 10 V/mm, the emission current of nanostructured materials is > 0.03 A/cm2 and of Si-C-N crystal is 0.0025 A/cm2. The carbon-based materials that contained Si and N, and the corresponding nanostructured materials are promising candidates for field emission applications.

中文摘要 i
英文摘要 v
摘要圖示 ix
誌謝 x
目錄 xi
表目錄 xvii
圖目錄 xviii
第一章 緒論 1
1.1 前言 1
1.2 各章提要 2
圖1-1 4
第二章 文獻回顧 5
2.1 含Si,N 碳基晶體及其奈米結構簡介 5
2.2 理論預測C-N晶體與Si-C-N晶體之結構介紹 9
2.3 理論預測C-N晶體與Si-C-N晶體之性質介紹 10
2.3.1 硬質薄膜之機械性質 10
2.3.2 各種薄膜機械性質之比較 11
2.3.3 三元Si-C-N薄膜之組成、能隙及表面形貌 11
2.4 碳材料之結構及性質 12
2.4.1 碳之各種同素異構體之結構 13
2.4.2 碳之各種同素異構體之性質 16
2.4.3 碳奈米管之性質 17
2.4.3.1 電性 17
2.4.3.2 機械性質 18
2.4.3.3 場效發射性質 19
2.4.3.4 熱性質 20
2.5 碳奈米管的合成方法 21
2.5.1 雷射削剝或稱雷射蒸發法 21
2.5.2 電弧蒸發法 21
2.5.3 汽相-凝結法 22
2.5.4 電漿燄分解法 22
2.5.5 熱分解法 22
2.5.6 微波電漿輔助化學氣相沉積法 22
2.5.7 微波電漿-熱燈絲-化學氣相沉積法 23
2.5.8 化學氣相沉積法 23
2.5.9 微波電漿電子迴旋共振化學氣相沉積法 23
2.6 碳奈米管/奈米纖維的成長機制 23
2.6.1 無觸媒成長碳奈米管機制 24
2.6.2 觸媒成長單管壁碳奈米管機制 26
2.6.3 觸媒成長多管壁碳奈米管機制 29
2.7奈米結構之分析方法 31
2.7.1 高解析度電子顯微鏡 31
2.7.2 原子力顯微鏡 31
2.7.3 掃描穿隧電子顯微鏡 31
2.7.4 四點探針電性量測 32
2.7.5 電子能量損失圖譜 32
2.8 碳基奈米結構的可能應用 33
2.8.1 場效發射顯示器 33
2.8.2 能量儲存上的應用 34
2.8.3 填充複合材料 36
2.8.4 奈米探針與感測器 37
2.8.5 奈米級電子元件的應用 38
表2-1 ~ 2-8 39
圖2-1 ~ 2-36 47
第三章 實驗步驟 68
3.1 微波電漿化學氣相沉積設備系統 68
3.2 反應氣體、原料、基材與試片前處理 69
3.3 緩衝層與觸媒沉積方法 70
3.4 薄膜沉積步驟及實驗流程 71
3.5 薄膜特性分析方法 72
3.5.1 形貌及微觀結構分析 72
3.5.2 晶體結構分析 73
3.5.3 薄膜鍵結之分析 73
3.5.4 成份分析 74
3.5.5 機械性質分析 74
3.5.6 場效發射性質分析 75
3.5.7 陰極螢光光譜分析 75
表3-1 ~ 3-2 76
圖3-1 ~ 3-4 79
第四章 三元Si-C-N晶體薄膜之結構及性質 84
4.1 三Si-C-N晶體薄膜合成條件 84
4.2 結果與討論 86
4.2.1外加緩衝層對Si-C-N晶體薄膜結構和性質的影響 86
4.2.1.1 薄膜的成份 86
4.2.1.2 表面形貌 87
4.2.1.3 陰極螢光光譜 87
4.2.1.4 場效發射性質 88
4.2.1.5 薄膜奈米硬度 89
4.2.2 鍍鈷之矽棒時機對Si-C-N晶體薄膜結構和性質的影響 89
4.2.2.1 薄膜的形貌 89
4.2.2.2 電子能譜與鍵結 90
4.2.2.3 化學成份與晶體結構 91
4.2.2.4 場效發射性質 93
4.2.2.5 薄膜奈米硬度 94
4.2.3 沉積條件對Si-C-N晶體成長之影響 94
4.3 結論 95
表4-1 96
圖4-1 ~ 4-11 97
第五章 三元Si-C-N奈米管之結構及性質 108
5.1 三元Si-C-N奈米管和晶體薄膜之沉積條件比較 108
5.2 結果與討論 109
5.2.1 由Si-C-N薄膜變成奈米管之沉積條件比較 109
5.2.2 三元Si-C-N薄膜和奈米管之鍵結比較 110
5.2.3 三元Si-C-N薄膜和奈米管之場效發射性質比較 111
5.3 結論 112
表5-1 113
圖5-1 ~ 5-7 114
第六章 碳奈米管及其它碳奈米結構之合成條件 121
6.1 碳奈米管/碳奈米結構之沉積方法與條件 121
6.2 結果與討論 122
6.2.1 碳奈米結構的形貌,成長機制及性質 122
6.2.1.1 各種觸媒輔助碳奈米管之形貌 122
6.2.1.2 觸媒對場效發射性質的影響 124
6.2.1.3 中空碳奈米管與實心碳奈米棒的SEM形貌圖 125
6.2.1.4 中空碳奈米管與實心碳奈米棒之TEM結構與成長機制 127
6.2.1.5 竹節狀與中空奈米管場效發射性質比較 128
6.2.2 添加緩衝層對成長碳奈米管的影響 129
6.2.2.1 氫電漿蝕刻活化後觸媒奈米顆粒之組成 129
6.2.2.2 觸媒輔助碳奈米管之形貌 130
6.2.2.3 碳奈米管的TEM結構與竹節狀碳奈米管的形成機制 132
6.2.2.4 碳奈米管之拉曼圖譜 134
6.2.3 單顆觸媒成長多支多管壁碳奈米管之成長機制 135
6.2.3.1 溫度的效應 135
6.2.3.2 碳奈米管SEM形貌比較 137
6.2.3.3 碳奈米管TEM結構與成長機制 137
6.3 結論 139
表6-1 ~ 6-6 140
圖6-1 ~ 6-20 143
第七章 碳奈米管之選擇性沉積 165
7.1 選擇性沉積方法 165
7.2 結果與討論 166
7.2.1 選擇性沉積之機制與選擇性 166
7.2.2 選擇性沉積奈米管之結構 167
7.3 結論 167
圖7-1 ~ 7-5 169
第八章 總結論 174
圖8-1 178
第九章 未來展望 179
圖9-1 ~ 9-2 181
參考文獻 182
著作 199

A
1. Ahn, S., Y. Kim, K. J. Kim, T. H. Kim, H. Lee and M. H. Kim, “Develop of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives”, J. Power sources 81-82 (1996) 896-901.
2. Ajayan, P. M., S. Iijima and T. Ichihashi, “Electron-energy-loss spectroscopy of carbon nanometer-size tubes”, Phys. Rev. B. 47 (1993) 6859-6862.
3. Ajayan, P. M., O. Stephan, P. Redlich and C. Colliex, “Carbon nanotubes as removable template for metal oxide nanocomposites and nanostructures”, Nature 375 (1995) 564-567.
4. Ajayan, P. M., L. S. Schadler, C. Giannaris and A. Rubio, “Single-walled carbon nanotube-polymer composites: strength and weakness”, Adv. Mater. 12 (2000) 750-753.
5. Amaratunga, A. J. and S. R. P. Silva, “Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes”, Appl. Phys. Lett. 68 (1996) 2529-2531.
6. Anthony, T. R., W. F. Banholzer, J. F. Fleischer, L. Wei, P. K. Kuo, R. L. Thomas and R. W. Pryor, “Thermal diffusivity of isotropically enriched 12C diamond”, Phys. Rev. B 42 (1990) 1104-1111.
7. Andrews, R., D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey and J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization”, Chem. Phys. Lett. 303 (1999) 467-474.
8. Avigal, Y., and R. Kalish, “Growth of aligned carbon nanotubes by biasing during growth ”, Appl. Phys. Lett. 78 (2001) 2291-2293.
B
9. Bacon, R. “Growth, structure and properties of graphite whisker”, J. Appl. Phys. 31 (1960) 283-290.
10. Badizian, A., T. Badizian, W. D. Drawl and R. Roy, “Silicon carbonitride : a rival to cubic boric nitride”, Dia. Relat. Mar. 7 (1998) 1519-1525.
11. Baker, R. T. K., M. A. Barber, P. S. Harris, F. S. Feates and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene”, J. Catal. 26 (1972) 51-62.
12. Baker, “Catalytic growth of carbon filaments”, Carbon 27 (1989) 315-323.
13. Berber, S., Y. K. Kwon and D. Tománek, “Unusually high thermal conductivity of carbon nanotubes”, Phys. Rev. Lett. 84 (2000) 4613-4616.
14. Bhusari, D. M., C. K. Chen, K. H. Chen, T. J. Chuang, L. C. Chen and M. C. Lin, “Composition of SiCN crystals consisting of a predominantly carbon-nitride network ”, J. Material Research 12 (1997) 322-325.
15. Birkett, P. R., A. J. Cheetham, B. R. Eggen, J. P. Hare, H. W. Kroto and D. R. M. Walton, “Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single walled nanotubes of uniform diameter”, Chem. Phys, Lett. 281 (1997) 111-114.
16. Birtto, P. J., K. S. V., Santhanam and P. M. Ajayan, “Carbon nanotube electrode for oxide of dopamine”, Bioelectrochem. Bioenergetics. 41 (1996) 121-125.
17. Birtto, P. J., K. S. V. Santhanam, A. Rubio, J. A. Alonso and P. M. Ajayan, “Improved charge transfer at carbon nanotube electrodes”, Adv. Marter. 11 (1999) 154-157.
18. Biró,L. P., G. Molnár, I. Szabó, Z. E. Horváth, J. Gyulai, Z. Kónya, P. Piedigrosso, A. Fonseca, J. B. Nagy and P. A. Thiry, “Selective nucleation and growth of carbon nanotubes at the CoSi2/Si interface”, Appl. Phys. Lett. 76 (2000) 706-708.
19. Bower, C., W. Zhu, S. Jin and O. Zhou, “Plasma-induced alignment of carbon nanotubes ”, Appl. Phys. Lett. 77 (2000) 830-832.
20. Bower, C. and O. Zhou, “Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition”, Appl. Phys. Lett. 77 (2000) 2767-2769.
C
21. Carson, R. D., and S. E. Schnatterly, “Valence-band electronic structure of silicon nitride studied with the use of soft-x-ray emission”, Phys. Rev. B 33 (1986) 2432-2438.
22. Castellano, J. A., “Handbook of display technology”, Academic press, San Diego (1992).
23. Cater, G., Z. He and J. S. Colligon, “Ion-assisted deposition of C-N and Si-C-N films”, Thin Solid Films 283 (1996) 90-96.
24. Celii, F. G., P. E. Pehrsson, H. —t. Wang and J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond”, Appl. Phys. Lett. 52 (1988) 2043-2045.
25. Charlier. J. C. and J. P. Michenaud, “Energetics of multilayered carbon tubules”, Phys. Rev. Lett. 70 (1993) 1858-1861.
26. Charlier, J. C., A. de Vita, X. Blasé and R. Car, “Microscopic growth mechanisms for carbon nanotubes”, Science 275 (1997) 646-649.
27. Charlier, J. C., X. Blasé, A. de Vita and R. Car, “Microscopic growth mechanisms for carbon and boron-nitride nanotubes”, Appl. Phys. A 68 (1999) 267-273.
28. Che, G., B. B. Lamshmi, E. R. Fisher and C. R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production”, Nature 393 (1998) 346-349.
29. Chen, J., M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund and R. C. Haddon, “Solution properties of single-walled carbon nanotubes”, Science 282 (1998) 95-98.
30. Chen, L. C., C. Y. Yang, D. M. Bhusari, K. H. Chen, M. C. Lin, J. C. Lin and T. J. Chung, “Formation of crystalline silicon carbon nitride films by microwave plasma-enhanced chemical vapor deposition ”, Dia. Relat. Mar. 5 (1996) 514-518.
31. Chen, L. C., D. M. Bhusari, C. Y. Yang, K. H. Chen, T. J. Chuang, M. C. Lin, C. K. Chen and Y. F. Huang, “Si-containing crystalline carbon nitride derived from microwave plasma-enhanced chemical vapor deposition”, Thin Solid Films 303 (1997) 66-75.
32. Chen, L. C., C. K. Chen, S. L. Wei, D. M. Bhusari, K. H. Chen, Y. F. Chen, Y. C. Jong and Y. S. Huang, “Crystalline silicon carbon nitride: A wide band gap semiconductor”, Appl. Phys. Lett. 71 (1998) 2463-2465.
33. Chen, L. C., K. H. Chen, S. L. Wei, P. D. Kichambare, J. J. Wu, T. R. Lu and C. T. Kuo, “Crystalline SiCN: a hard material rivals to cubic BN”, Thin Solid Films 355-356 (1999) 112-116.
34. Chen, L. C., C. T. Wu, J. J. Wu and K. H. Chen, “Growth, characterization, and properties of carbon nitride with and without silicon addition”, Inter. J. Mon. Phys. B14 (2000) 333-348.
35. Chen, P., X. Wu, J. Lin and K. L. Tan, “High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures”, Science 285 (1999) 91-93.
36. Chi, R. P. (Ed.), Tribology Materials JongSa Corp., Taiwan, 1984.
37. Choi, W. B., D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park and J. M. Kim, “Fully sealed, high-brightness carbon nanotube field-emission display”, Appl. Phys. Lett. 75 (1999) 3129-3131.
38. Chopra, N. G., R. J. Luyken, K. Cherrey, V. H. Gespi, M. L. Cohen, S. G. Loute and A. Zettl, “Boron nitride nanotubes”, Science 269 (1995) 966-969.
39. Cohen, M. L., “Calculation of bulk moduli of diamond and zinc-blend solids”, Phys. Rev. B. 32 (1985) 7988-7991.
40. Cohen, M. L. “Predicting useful materials”, Science 261 (1993) 307-308.
41. Collins, P. G., M. S. Arnold and P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown”, Science 292 (2001) 706-709.
42. Cox, D. and S. T. Picraux, Application: Energy and Chemical Industries, in Nanotechnology Research Directions: IWGN Workshop Report Vision for Nanotechnology Research and Development in the Next Decade, WTEC, Loyola College, Maryland, September (1999).
D
43. Dai, H., A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, “Single-walled nanotubes produced by metal-catalyzed disproportionation of carbon monoxide”, Chem. Phys. Lett. 260 (1996) 471-475.
44. Dai, H. J., J. H. Halfner, A. G. Rinzler, D. T. Colbert and R. E. Smalley, “Nanorubes as nanoprobes in scanning probe microscopy”, Nature 384 (1996) 147-150.
45. Derycke, V., P. Martel, J. Appenzeller and Ph. Avouris, “Carbon nanotube inter-and intramolecular logic gates”, Nano Lett. 1 (2001) 453-456.
46. Dresselhaus, M. S., G. Dresselhaus and P. C. Eklund, “Science of fullerenes and carbon nanotubes”, Academic press, San Diego (1995) p18, p40, p60, p64, p172.
47. Dresselhaus, M. S., G. Dresselhaus, K. Sugihara, I. L. Spain and H. A. Goldberg, “Graphite fibers and filaments”, Springer, Berlin, Heidelberg (1998).
48. Dresselhaus, M. S., K. A. Williams, P. C. Elkund, MRS Bull. 24 (1999) p45.
49. Dresselhaus, M. S., G. Dresselhaus and P. Avouris, “Carbon nanotubes”, Springer press, NY (2001) p21, p65, p404.
50. Dillon, A. C., K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethuune and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature 386 (1997) 377-379.
51. Dolbak, A. E., B. Z. Olshanetsky and S. A. Teys, “Co interaction with clean silicon surfaces “, Surf. Sci. 373 (1997) 43-55.
E
52. Ebbessen, T. W., H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, “Electrical conductivity of individual carbon nanotubes”, Nature 382 (1996) 54-56.
53. Ebbesen, Thomas. W. “Carbon nanotubes”, CRC press, Boca Raton (1997) p5, p93, p115, p139-154, p163-188.
54. Endo, M. and H. W. Kroto, “Formation of carbon nanofibers”, J. Phys. Chem. 96 (1992) 6941-6944.
55. Endo, M., K. Takeuchi, K. Kobori, K. Takahashi, H. W. Kroto and A. Sarkar, “Pyrolytic carbon nanotubes from vapr-grown carbon fibers”, Carbon 33 (1995) 873-881.
F
56. Falvo, M. R., G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks Jr, S. Washburn and R. Superfine, “Bending and buckling of carbon nanotubes under large strain”, Nature 389 (1997) 582-584.
57. Fan, S., M. G. Michael, G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties”, Science 283 (1999) 512-514.
58. Fink, J., T. M. Heinzerling and J. Pflűger, “Structure and binding of hydrocarbon plasma generated carbon films: an electron energy loss study”, Solid State Communications 47 (1983) 687-691.
59. Frackowiak, E., S. Gautier, S. H. Gaucher, S. Bonnamy and F. Beguin, “Electrochemical storage of lithium in multiwaller carbon nanotubes”, Carbon 37 (1999) 61-69.
60. Franklin, N. R. and H. Dai, “An enhanced CVD approach to extensive nanotube network with directionality”, Adv. Mater. 12 (2000) 890-894.
G
61. Gamaly, E. G., T. W. Ebbesen, “Mechanism of carbon nanotube formation in the arc discharge”, Phys. Rev. B 52 (1995) 2083-2089.
62. Gao, B., A. Kieinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu and O. Zhou, “Electrochemical intercalation of single-walled carbon nanotubes with lithium”, Chem. Phys. Lett. 307 (1999) 153-157.
63. Gavillet, J, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle and J. C. Charlier, “Root-growth mechanisms for single-wall carbon nanotubes”, Phys. Rev. Lett. 87 (2001) 275504-1~275504-4.
64. Gong, Z., E. G. Wang, G. C. Xu and Y. Chen, “Influence of deposition condition and hydrogen on amorphous-to-polycrystalline SiCN films”, Thin Solid Films 348 (1999) 114-121.
65. Gröning, O., O. M. Küttel, C. Emmenegger, P. Gröning and L. Schlapbach, “Field emission of carbon nanotubes”, J. Vac. Sci. Technol B18 (2000) 665-678.
66. Guo, T., P. Nikolaev, A. G. Rinzler, D. Tománek, D. T. Colbert and R. E. Smalley, “Self-assembly of tubular fullerenes”, J. Phys. Chem. 99 (1995) 10694-10697.
H
67. Han, W. Q., Ph. Kohler-Redlich, T. Seeger, F. Ernst, M. Rühle, N. Grobert, W. K. Hsu, B. H. Chang, Y. Q. Zhu, H. W. Kroto, M. Terrones and H. Terrones, “ Aligned CNx nanotubes by pyrolysis of ferrocence/C60 under NH3 atmosphere”, Appl. Phys. Lett. 77, 1807 (2000).
68. Hari, S. Nalwa (ed.), “Handbook of nanostructured materials and nanotechnology”, Academic press (2000) 1.
69. Harris, P. J. F.(ed), “Carbon nanotubes and related structures”, Cambridge university press, (1999) 87, 16-24.
70. Hiura, H., T. W. Ebbessen, J. Fujita, K. Tanigaki and T. Takada, “role of sp3 defect structures in graphite and carbon nanotubes”, Nature 367 (1994) 148-151.
71. Holczer, K., O. Klein, G. Grűner, S. M. Huang, R. B. Kaner, K. J. Fu, R. L. Whetten and F. Diederich, “Aljali-fulleride superconductors : synthesis, composition, and diamagnetic shielding”, Science 252 (1991) 1154-1157.
72. Hone, J., M. Whitney and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes”, Synthetic Metals 103 (1999) 2498-2499.
I
73. Iiie, A., A. C. Ferrari T. Yagi and J. Robertson, “Effect of sp2-phase nanostructure on field emission from amorphous carbon”, Appl. Phys. Lett. 76 (2000) 2627-2629.
74. Iijima. S, “Helical microtubules of graphitic carbon”, Nature 354 (1991) 56-58.
75. Iijima, S., P. M. Ajayan and T. Ichihashi, “Growth model for carbon nanotubes”, Phys. Rev. Lett. 69 (1992) 3100-3103.
76. Iijima, S., “Growth of carbon nanotubes”, Mat. Sci. & Eng. B19 (1993) 172-180.
J
77. Journet, C., W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique”, Nature 388 (1997) 756-758.
78. Jin, L., C. Bower and O. Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching”, Appl. Phys. Lett. 73 (1998) 1197-1199.
K
79. Kim, P. and C. M. Lieber, “Nanotube nanotweezers”, Science 286 (1999) 2148-2150.
80. Kovalevski, V. V. and A. N. Safronov, “Pyrolysis of hollow carbons on melted catalyst”, Carbon 36 (1998) 963-968.
81. Kim, M. S., N. M. Rodriguez and R. T. K. Baker, “The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments”, J. Catal. 131 (1991) 60-73.
82. Kong, J., N. R. Franklin, C. Zhou, M. G. Chapline, S. P. K. Cho and H. Dai, “Nanotube molecular wires as chemical sensors”, Science 287 (2000) 622-625.
83. Krätschmer, W., L. D. Lamb, K. Fostiropoulos and D. R. Huffman, “Solid C60 : a new form of carbon”, Nature 1990 (347) 354-357.
84. Kroto, H. W., J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smally, “C60: Buckminsterfullerene”, Nature 318 (1985) 162-163.
85. Kűttel, Q. M., O. Groening, C. Emmenegger and L. Schlapbach, “Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma”, Appl. Phys. Lett. 73 (1998) 2113-2115.
L
86. Lambin, P., L. Phillippe, J. C. Charlier and J. P. Michenaud, “Electronic band structure of multilayered carbon tubules”, Comp. Mat. Sci, 2 (1994) 350.
87. Lee, C. J and Y. K. Sung, “Characterization of TiN/TiSi2 bilayer for application to ULSI”, J. Electron. Mar. 22 (1993) 717-723.
88. Lee, C. J. and J. Park, “Growth model of bamboo-shaped carbon nanotube by thermal chemical vapor deposition”, Appl. Phys. Lett. 77 (2000) 3397-3399.
89. Lee, C. J., J. Park, S. Y. Kang and J. H. Lee, “Growth and field electron emission of vertically aligned multiwalled carbon nanotubes”, Chem. Phys. Lett. 326 (2000) 175-180.
90. Lee, J. S., K. S. Liu and I. N. Lin, “Effect of substrate materials on the electron field emission characteristics of chemical vapor deposited diamond films”, J. Appl. Phys. 82 (1997) 3310-3313.
91. Lee, Y. H., P. D. Richard, K. J. Bachmann and J. T. Glass, “Bias-controlled chemical vapor deposition of diamond thin films”, Appl. Phys. Lett. 56 (1990) 620-623.
92. Li, D. C., L. Dai, S. Huang, A. W. H. Mau and Z. L. Wang, “Structure and growth of aligned carbon nanotube films by pyrolysis”, Chem. Phys. Lett. 316 (2000) 349-355.
93. Li, W. Z., S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, “Large-scale synthesis of aligned carbon nanotubes”, Science 274 (1996) 1701-1703.
94. Li, W. Z., J. G. Wen and Z. F. Ren, “Straight nanotube Y junctions”, Appl. Phys. Lett. 79 (2001) 1879-1881.
95. Lin, C. H., H. L. Chang and C. T. Kuo, “Growth mechanism and properties of the large area well-aligned carbon nanostructures deposited by microwave plasma ECR-CVD”, Dia. Relat. Mar. 11 (2002) 922.
96. Lin, D. Y., C. F. Li, Y. S. Huang, Y. C. Jong, Y. F. Chen, L. C. Chen, C. K. Chen, K. H. Chen and D. M. Bhusari, “Temperature dependence of the direct band gap of Si-containing carbon nitride crystalline films”, Phys. Rev. B56 (1997) 6498-6501.
97. Liu, A. and M. L. Cohen, “Structure properties and electronic structure of low-compressibility materials: Si3N4 and hypothetical C3N4”, Phys. Rev. B 41 (1990) 10727-10734.
98. Liu, A. Y. and M. L. Cohen, “Prediction of new compressibility solids”, Science 245 (1989) 841-842.
99. Loiseau, A., F. Willame, N. Demoncy, H. Hug and H. Pascard, “Boron Nitride Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge”, Phys. Rev. Lett. 76 (1996) 4737- 4740.
M
100. Ma, X. and E. G. Wang, “CNx/carbon nanotube jumctions synthesized by microwave chemical vapor deposition”, Appl. Phys. Lett. 78 (2001) 978-981.
101. Ma, X., E. G. Wang, W. Z. Zhou, D. A. Jefferson, J. Chen, S. Z. Deng, N. S. Xu and J. Yhan, “Polymerized carbon nanobells and their field-emission property”, Appl. Phys. Lett. 75 (1999) 3105-3107.
102. Machorro, R., E. C. Samano, G. Soto and G. Cota, “SiCxNy thin films alloys prepared by pulsed excimer laser deposition”, Appl. Surf. Sci. 127-129 (1998) 564-568.
103. Maex, K., “Silicides for integrated circuits: TiSi2 and CoSi2”, Mater. Sci. & Eng. R11 (1993) 1-153.
104. Maiti, A., C. J. Brabec and J. Bernholc, “Kinetics of metal-catalyzed growth of single-walled carbon nanotubes”, Physical Rev. B 55 (1997) R6097-R6100.
105. Mao, J. M., L. F. Sun, L. X. Qian, Z. W. Pan, B. H. Chang, W. Y. Zhou, G. Wang and S. S. Xie, “Growth of carbon nanotubes on cobalt disilicide precipitates by chemical vapor deposition”, Appl. Phys. Lett. 72 (1998) 3297-3299.
106. Margulis, L., G. Salitra, R. Tenne, M. Talianker, “Nested fullerene-like structures”, Nature 365 (1993) 113-114.
107. Matsumoto, S., Y. Sato, M. Kamo and N. Setaka, “Vapor deposition of diamond particle from methane”, Jpn. J. Appl. Phys. 21 (1982) L183-L185.
108. McKenzíe, D. R., R. C. McPhedram, N. Savvides and D. J. H. Cockayne, “Analysis films prepared by plasma polymerization of acetylene in a D. C. magentron”, Thin Solid Films 108 (1983) 247-256.
109. Merkulov, V. I., D. H. Lowndes, L. R. Baylor and S. Kang, “Field emission properties of different forms of carbon”, Solid-State Electronics 45 (2001) 949-956.
110. Merkulov, V. I., D. H. Lowndes and L. R. Baylor, “Scanned-probe field emission studies of vertically aligned carbon nanofibers”, J. Appl. Phys. 89 (2001) 1933-1937.
111. Merkulov, V. I., A. V. Melechko, M. A. Guillorn, D. H. Lowndes and M. L. Simpson, “Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical vapor deposition ”, Appl. Phys. Lett. 79 (2001) 2970-2972.
112. Miyamoto, Y., M. L. Cohen and S. G. Louie, “Theoretical investigation of graphite carbon nitride and possible tubule forms”, Solid State Communication 102 (1997) 605-608.
113. Moriyama, M., K. Kamata and I. Tanabe, “Mechanical properties of SiNxNy ceramic films prepared by plasma CVD”, J. Material Research 26 (1991) 1287- 1294.
114. Motojima, S. and Q. Chen, “Three-dimensional growth mechanism of cosmo-mimetic microcoils obtained by chemical vapor deposition”, J. Appl. Phys. 89 (1999) 3919-3921.
115. Muñoz, E., A. M. Benito, L. C. Estepa, J. Fernández, Y. Martínez, M. T. Martinez and G. F. de la Fuente, “Structures of soot generated by laser induced pyrolysis of metal composite targets”, Carbon 36 (1998) 525-528.
116. Murarka, S. P, “Silicides for VLSI applications”, Academic press, New York (1983).
N
117. Nicolet, M. A. and S. S. Lau (eds), “VLSI Electronics microstructure science”, Academic press, New York (1983) p. 329.
118. Nihara, K. and T. Hirai, “Chemical vapor-deposited silicon nitride”, J. Mater. Sci. 12 (1977) 1243-1252.
119. Nikolet, M. A. and S. S. Lau, “VLSI Electronics: Microstructure Science”, edited by N. G. Einspruch and G. B. Larrabee, Academic, New York (1983) Vol. 6, Chap. 6.
O
120. Oberlin, A., M. Endo and T. Koyama, “ Filamentous growth of carbon through benzene decomposition”, J. Cry. Growth 32 (1976) 335-349.
121. Obraztsov, A. N., A. P. Volkov and I. Pavlovsky, “Field emission from nanostructured carbon materials”, Dia. Relat. Mar. 9 (2000) 1190-1195.
122. Ouyang, M., J. L. Huang, C. L. Cheung and C. M. Lieber, “Atomically resolved single-walled carbon nanotube interamolecular junction”, Science 291 (2001) 97-100.
P
123. Palstra, T. T. M., O. Zhou, Y. Iwasa, P. Sulewski, R. Fleming and B. Zegarski, “Superconductivity at 40 K in cesium doped C60”, Solid State Commun. 93 (1995) 327-330.
124. Planeix, J. M., N. Coustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier and P. M. Ajayan, “Application of carbon nanotubes as supports in heterogeneous catalysis”, J. Am. Chem. Soc. 116 (1994) 7935-7336.
Q
125. Qin, L. U. and S. Iijima, “Structure and formation of raft-like bundles of single-walled helical carbon nanotubes produced by laser evaporation”, Chem. Phys. Lett. 269 (1997) 65-71.
126. Qin, L. C., D. Zhou, A. R. Krauss and D. M. Gruen, “Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett. 72 (1998) 3437-3439.
R
127. Rao, C. N. R., B. C. Satishkumar, A. Govindaraj and M. Nath, “Nanotubes”, Chemphyschem 2 (2001) 78-105.
128. Remskar, M., Z. Skraba, F. Cleton, R. Sanjines and F. Levy, “MoS2 as microtubes ”, Appl. Phys. Lett. 69 (1996) 351-353.
129. Remskar, M., Z. Skraba, M. Regula, C. Ballif , R. Sanjines and F. Levy, “New crystal structures of WS2: microtubes, ribbons, and ropes”, Adv. Mater. 10 (1998) 246-249.
130. Rinzler, A. G., J. P. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tománek, P. Nordlander, D. T. Colbert and R. E. Smalley, “Unraveling nanotubes: field emission from atomic wire”, Science 296 (1995) 1550-1553.
131. Robertson, J. and E. P. Órielly, “Electronic and atomic structure of amorphous carbon”, Phys. Rev. B 35 (1987) 2946-2957.
132. Robertson, J., “Electron affinity of carbon systems”, Dia. Relat. Mar. 5 (1996) 797-801.
133. Robertson, J., “Mechanism of electron field emission from diamond and diamond-like carbon”, Vacuum microelectronics conference, 1998, 11th, 162-163.
134. Rodriguez, N. M., “A review of catalytically grown carbon nanofibers”, J. Mater. Res., 8 (1993) 3233-3250.
135. Rodriguez, N. M., A. Chambers, R. T. K. Baker, “Catalytic engineering of carbon nanostructures”, Langmuir 11 (1995) 3862-3866.
136. Ruoff, R. S. and D. C. Lorents, “Mechanical thermal properties of carbon nanotubes”, Carbon 33 (1995) 925-930.
S
137. Saito, R., M. Fujita, G. Dresselhaus and M. S. Dresselhaus, “Electronic structure of chiral graphene tubules”, Appl. Phys. Lett. 60 (1992) 2204-2206.
138. Saito, R., G. Dresselhaus and M. S. Drresselhaus,“ Electronic-structure of double-layer grephene tubules”, J. Appl. Phys. 73 (1993) 494-500.
139. Saito, R., M. Fujita, D. Dresselhaus and M. S. Dresselhaus, “Electronic structures and growth mechanism of carbon tubules”, Mater. Sci. Eng. B 19 (1993) 185-191.
140. Saito,Y., M. Qkuda, N. Fujimoto, T. Yoshikawa, M. Tomita and T. Hayashi, “Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation”, Jpn. J. Appl. Phys. 33 (1994) L526-L529.
141. Saito, Y., “Nanoparticles and filled nanocapsules”, Carbon, 33 (1995) 979-988.
142. Saito, Y., “Preparation and properties of carbon nanotubes”, International symposium on micromechartronics and human science (1999) 43-49.
143. Santos, M. C. dos and F. Alvarez, “Nitrogen substitution of carbon in graphite: structure evolutions toward molecular forms”, Phys. Rev. B 58 (1998) 13918-11924.
144. Sarkar, A., H. W. Kroto and M. Endo, “Hemi-toroidal networks in pyrolytic carbon nanotubes”, Carbon 33 (1995) 51-55.
145. Scott, A. W., “Understanding microwave”, Wiley, New York (1993).
146. Schadler, L. S., S. C. Giannaris and P. M. Ajayan, “Load transfer in carbon nanotube epoxy composites”, Appl. Phys. Lett. 73 (1998) 3842-3844.
147. Setlur, A. A., J. M. Lauerhaas, J. Y. Dai and R. P. H. Chang, “Formation of nanotube nanowires, and nanoparticles in a hydrogen arc ”, Springer (1998) 43-50.
148. Sen, R., B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, G. Raina, J. P. Zhang, A. K. Cheetham and C. N. R. Rao, “B—C—N, C—N and B—N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts”, Chem. Phys. Lett. 287 (1998) 671-676.
149. Spindt, C. A., I. Brodie, L. Humphrey and E. R. Westerberg, “Physical properties of thin-film field emission cathodes with molybdenum cones”, J. Appl. Phys. 47 (1976) 5248-5263.
150. Spitsyn, B. V., L. L. Bouilov and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surface”, J. Crys. Growh 52 (1981) 219-226.
151. Spitzl, R., V. Raiko, R. Heiderhoff, H. Gnaser and J. Engermann, “MPCVD diamond deposition on bias pretreated porous substrate”, Dia. Relat. Mar. 4 (1995) 563-568.
152. Siegel, R. W., “Nanostructure science and technology”, WTEC press, USA (1999).
153. Smalley, R. E., “From dopyballs to nanowires”, Mar. Sci. & Eng. B19 (1998) 1-7.
154. Srivastava, A., A. K. Srivastava and O. K. Srivastava, “Curious aligned growth of carbon nanotubes under applied electric field”, Carbon 39 (2001) 201-206.
155. Suda, Y., T. Nakazono, K. Ebihara, K. Baba and S. Aoqui, “Pulsed laser deposition of carbon nitride thin films from graphite targets”, Carbon 36 (1998) 771-774.
156. Sung, C. M and M. Sung, “Carbon nitride and other speculative superhard materials”, Mater. Chem. Phys. 43 (1996) 1-18.
157. Sung, S. L., X. J. Gao, K. P. Huang, F. R. Chen and H. C. Shih, “The strengthening mechanism of DLC film on silicon by MPECVD”, Thin Solid Films 315 (1998) 345-350.
158. Subramoney, S., “Novel nanocarbons-structures, properties, and potential applications”, Adv. Mar. 10 (1998) 1157-1171.
T
159. Takamura, T., M. Saito, A. Shimokawa, C. Nakahara, K. Sekine, S. Maeno and N. Kibayashi, “Charge/discharge efficiency improvement by the incorporation of conductive carbons in the carbon anode of Li-ion batteries”, J. Power Sources 90 (2000) 45-51.
160. Tanigaki, K., S. Kuroshima, J. Fujita and T.W. Ebbesen, “Crystal growth of C60 thin films on layered structure”, Appl. Phys. Lett. 63 (1993) 2351-2353.
161. Tarntair, F. G., C. Y. Wen, L. C. Chen, P. F. Kuo, S. W. Chang, Y. F. Chen, W. K. Hong and H. C. Cheng, “Field emission from quasi-aligned SiCN nanorods”, Appl. Phys. Lett. 76 (2000) 2360-2632.
162. Tenne, R., L. Margulis, M. Genut and G. Hodes, “Polyhedral and cylindrical structures of tungsten disulphide”, Nature 360 (1992) 444-446.
163. Teter, D. M. and R. J. Hemley, “Low-compressibility carbon nitrides”, Science 271 (1996) 53-55.
164. Treacy, M. M. J., T.W. Ebbesen and J. M. Gibson, “Exceptionally high young’s modulus observed for individual carbon nanotubes”, Nature 381 (1996) 678-680.
165. Terrones, M., A. M. Benito, C. Manteca-Diego, W. K. Hsu, O. I. Osman, J. P. Hare, D. G. Reid, H. Terrones, A. K. Cheetham, K. Prassides, H. W. Kroto and D. R. M. Walton, “Pyrolytically grown BxCyNz nanomaterials: nanofibers and nanotubes”, Chem. Phys. Lett. 257 (1996) 576-582.
166. Teo, K. B. K, M. Chhiwalla, G. A. J. Amaratunga, W. I. Miline, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon”, Appl. Phys. Lett. 79 (2001) 1534-1536.
167. Terrones, M., A. M. Benito, C. M. Diego, W. K. Hsu, O. I. Osman, J. P. Hare, D. G. Reid, H. Terrones, A. K. Cheetham, K. Praddides, H. W. Kroto and D. R. M. Walton, “ Pyrolytically grown BxCyNz nanometerials: nanofibers and nanotubes”, Chem. Phys. Lett. 257 (1996) 576-582.
168. Terrones, M., H. Terrones, N. Grobert, W. K. Hsu, Y. Q. Zhu, J. P. Hare, H. W. Kroto and D. R. M. Wslton, Ph. Kohler-Radich, M. Rűhle, J. P. Zhang and A. K. Cheetham, “Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures”, Appl. Phys. Lett. 75 (1999) 3932-3934.
169. Terrones, M., P. Redlich, N. Grobert, S. Trasobares, W. K. Hsu, H. Terrones, Y. Q. Zhu, J. P. Hare, C. L. Reeves, A. K. Cheetham, M. Rűhle, H. W. Kroto and D. R. M. Walton, “Carbon nitride nanocomposites: formation of aligned CxNy nanofibers”, Adv. Mater. 11 (1999) 655-658.
170. Thess, A., R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer and R. E. Smalley, “Crystalline ropes off metallic carbon nanotubes”, Science 276 (1996) 483-487.
171. Tibbetts, G. G., “Why are carbon filaments tubular”, J. Cry. Growth 66 (1984) 632-638.
172. Ting, J. M. and C. C. Chang, “Multijunction carbon nanotube network”, Appl. Phys. Lett. 80 (2002) 324-325.
173. Treboux, G., P. Lapstun, Z. Wu and K. Silverbrook, “Interference-modulated conductance in a three-terminal nanotube system”, J. Phys. Chem. B 103(1999) 8671-8674.
174. Tsai, S. H., C. W. Chao, C. L. Lee and H. C. Shih, “Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis ”, Appl. Phys. Lett. 74 (1999) 3462-3464.
175. Tsai, S. H., F. K. Chiang, T. G. Tasi, F. S. Shieu and H. C. Shih, “Synthesis and characterization of the aligned hydrogenated amorphous carbon nanotubes by electron cyclotron resonance excitation”, Thin Solid Films 366 (2000) 11-15.
W
176. Wager, R. S. and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Lett. 4 (1964) 89-90.
177. Wager, H. D., O. Lourie, Y. Feldman and R. Tenne, “Stress fragmentation of multiwall carbon nanotubes in a polymer matrix”, Appl. Phys. Lett. 72 (1998) 72-74.
178. Wang, Z. L., P. Poncharal and W. A. de Heer, “Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM”, J. Phys. Chem. Solids 61 (2000) 1025-1030.
179. Wang, X., W . Hu, Y. Lin, C. Long, Y. Xu, S. Zhou,D. Zhu and L. Dai, “Bamboo-like carbon nanotube produced by pyrolysis of iron (II) phthalocyaine”, Carbon 39 (2001) 1533-1536.
180. Wei, Y. Y., G. Eres, V. I. Merkulov and D. H. Lowndes, “Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition”, Appl. Phys. Lett. 78 (2001) 1394-1396.
181. Wibbelt, M., H. Kohl and Ph. Kohler-Redlich, “Multiple-scattering calculations of electron-energy-loss near-edge structures of existing and predicted phases in the ternary system B-C-N”, Phys. Rev. B 59 (1999) 11739-11745.
182. Wisitsora-at, A., W. P. Kang, J. L. Davidson, Y. Gurbuz and D. V. Kerns, “Field emission enhancement of diamond tips utilizing boron doping and surface treatment”, Dia. Relat. Mar. 8 (1999) 1220-1224.
183. Wong, S. S., J. D. Harper, P. T., Jr.; Lieber, C. M., “Carbon nanotube tips: high-resolution probes for imaging biological systems”, J. Am. Chem. Soc. 120 (1998) 603-604.
184. Wong, S. S., A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging”, Appl. Phys. Lett. 73 (1998) 3465-3467.
185. Wu, G. T., C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He and W. Z. Li, “Structure and Lithium Insertion Properties of Carbon Nanotubes”, J. Electrochem. Soc. 146 (1999) 1696-1701.
186. Wu, J. U, C. T. Kuo and T. L. Liu, “Structures and properties of the SiNC films on Si wafer at different deposition stage”, Thin Solid Films, 398-399 (2001) 413-418.
X
187. Xu, X and G. R. Brandes, “A method for fabricating large-area patterned, carbon nanotube field emitters”, Appl. Phys. Lett. 74 (1999) 2549-2551.
Y
188. Yakobson, B. I., C. J. Brabec and J. Bernholc, “Nanomechanics of carbon tubes: instabilities beyond linear response”, Phys. Rev. Lett. 76 (1996) 2511-2514.
189. Ye, Y., C. C. Ahn, C. Withham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith and R. E. Smalley, “Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes”, Appl. Phys. Lett. 74 (1999) 2307-2309.
190. Yu, M. F., O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load”, Science 287 (2000) 637-639.
191. Yu J., X. D. Bai, J. Ahn, S. F. Yoon and E. G. Wang, “Highly oriented rich boron B-C-N nanotubes by bias-assisted hot filament chemical vapor deposition ”, Chem. Phys. Lett. 323 (2000) 529-533.
Z
192. Zelenski, C. M., P. K. Dorhout, “Template Synthesis of Near-Monodisperse1 Microscale Nanofibers and Nanotubules of MoS2”, J. Am. Chem. Soc. 120 (1998) 734-742.
193. Zhang, Z. J., S. Fan and C. M. Lieber, “Diamondlike properties in a single phase carbon nitride solid”, Appl. Phys. Lett. 68 (1996) 2639-2641.
194. Zhang, Q., S. F. Yoon, J. Ahn, B. Gan and M. B. Y. Rusli, “Carbon films with high density nanotubes produced using microwave plasma assisted CVD”, J. Phys. Chem. Solids 61 (2000) 1179-1183.
195. Zhou, D., S. Seraphin and S. Wang, “Single-walled carbon nanotubes growing radially from YC2 particles,” Appl. Phys. Lett. 65 (1994) 1593-1595.
196. Zhou, D. and S. Seraphin, “Complex branching phenomenon in the growth of carbon nanotubes”, Chem. Phys. Lett. 238 (1995) 286-289.
197. Zhu, W, G. Kochanski and S. Jin, “Low-field electron emission from undoped nanostructured diamond”, Science 282 (1998) 1471-1473.
198. Zhu, W., C. Bower, O. Zhou, G. P. Kochanski and S. Jin, “Large current density from carbon nanotube field emitters”, Appl. Phys. Lett. 75 (1999) 873-875.
199. Zhu, W. C. Bower, C. Kochanski and G. P. Jin, “Field emission properties of diamond and carbon nanotubes”, Dia. Relat. Mar. 10 (2001) 1709-1713.
200. Zimmerman, J. L.; R. Williams, V. N. Khabashesku, and J. L. Margrave, “Synthesis of Spherical Carbon Nitride Nanostructures”, Nano Lett.1 (2001) 731-734.
201. http://www.pa.msu.edu/cmp/csc/ntproperties/quickfacts.html.
202. http://cnst.rice.edu/smalleygroup/res.htm.
203. http://cnst.rice.edu/smalleygroup/images/allotropes.jpg.
204. http://www.physics.berkeley.edu/research/zettl/projects/imaging.html.
205. http://www.research.ibm.com/nanoscience/nanotubes.html.
206. 宋健民,工業材料,材料的新革命-鑽石膜的工業應用,100 (1995) 55。
207. 林啟瑞, “鑽石之硬焊特性及高附著性鑽石膜成長之研究”,國立交通大學機械工程研究所,博士論文,1998。
208. 蔡尚華, “碳基奈米材料合成及鑑定”,國立清華大學材料科學研究所,博士論文,2000。
209. 第二屆奈米材料展望研討會,國科會自然處,2000。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top