(3.235.108.188) 您好!臺灣時間:2021/03/03 20:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳盈佳
研究生(外文):Y. C. Chen
論文名稱:準分子雷射矽結晶化機制及複晶矽薄膜電晶體應用之研究
論文名稱(外文):Excimer Laser Crystallization of Si Film for Poly-Si TFT Device
指導教授:馮明憲馮明憲引用關係
指導教授(外文):M. S. Feng
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:134
中文關鍵詞:複晶矽薄膜電晶體準分子雷射液晶顯示器結晶化
外文關鍵詞:poly-SiTFTexcimer laserLCDcrystallization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:482
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:144
  • 收藏至我的研究室書目清單書目收藏:1
本研究探討了半高斯波(Semi-Gaussian)準分子雷射應用於矽結晶化。半高斯波準分子雷射單擊(Single shot)實驗發現,結晶化區域的晶粒尺寸因能量分佈而有差異;雷射能量對複晶矽晶粒尺寸的關係,基本上可區分為低能量因部份熔化造成的細晶粒區、適當能量之近完全熔化的側向經成長大晶粒區,以及高能量均質成核的細結晶區;多擊(Multiple shot)實驗發現,因最高雷射能量區落在前次雷射束造成的小晶粒複晶矽區,致使最大晶粒小於單擊試驗產生的晶粒。
本研究也探討了基板溫度效應對非晶矽雷射退火結晶化特性及薄膜結構的影響。實驗結果發現,在均質成核發生前,基板溫度的增加有助於結晶度的提升,獲得最大結晶度的雷射能量密度隨基板溫度的升高向低能量區偏移,最大晶粒尺寸隨能量密度增加而增加;基板溫度升高會改變複晶矽薄膜的表面粗糙度,在部份熔化區,非晶矽結晶化將使表面粗糙度大幅增加,而且基板溫度越高粗操度越大,薄膜表面粗糙度在大型側向成長晶粒發生時快速下降,進一步增加雷射能量密度至均質成核區,薄膜表面粗糙度則沒有太大的改變。
為了改善雷射退火複晶矽薄膜晶粒尺寸差異大的問題,本研究採用了超高真空化學氣相沉積系統製備的直接沉積複晶矽薄膜進行雷射退火,不同於傳統上使用非晶矽當起始材料的情形,直接沉積複晶矽薄膜經低能量雷射退火呈現結晶度下降的結果,最大晶粒尺寸出現在部份熔化區,其最大尺寸小於以非晶矽進行雷射退火的結果,薄膜表面粗糙度儘輕微的減小,與非晶矽在大型側向成長晶粒發生時快速下降有所不同。
為了探討矽薄膜結晶度對雷射退火結果的影響,本研究亦以不同能量搭配的二次雷射退火對薄膜結構的影響,實驗結果顯示,低於起始能量密度的第一次雷射退火造成的小晶粒薄膜會在第二次高能量的雷射退火中熔化及再結晶,但高能量密度的第一次雷射退火造成的大型側向成長晶粒薄膜,在第二次高能量的雷射退火中會造成晶界處產生小晶粒群凸出,此特性亦反應在其元件特性,低能量與高能量的兩次雷射退火製備的薄膜電晶體有較好的電子遷移率與較小的次臨界波動移,但高能量雷射退火後的複晶薄膜再經第二次雷射退火,其電子遷移率與次臨界波動則會造成負面影響。

In this study, the crystallization of a-Si with semi-Gaussian excimer laser was investigated. After the single-shot excimer laser process, the poly-Si region showed grains with a wide range of sizes corresponding to the Gaussian distributed laser energy. From the view of laser energy, three crystallization regimes were found on the ELA a-Si films: (1) partial-melting, (2) near-complete-melting and (3) complete-melting regimes. Large super-lateral-grain-growth (SLG) grains were observed in the near-complete-melting regime. The grain size of poly-Si film using multiple shot laser annealing was constrained by the Gaussein distributed laser energy. The large grains were suppressed due to the small grains formed in the first shot.
In addition, the influence of substrate temperature on the properties of polysilicon films prepared by excimer laser annealing was studied. As the substrate temperature was elevated, the maximum crystallinity and grain size increased, while the laser energy needed to obtain the maximum crystallinity of polysilicon films decreased. The elevated substrate temperature also changed the surface roughness of polysilicon films. In the partially melting regime, the surface roughness increased with laser energy and substrate temperature. The surface roughness dropped pronouncedly before reaching the super-lateral-grain-growth regime. Further increasing energy to homogeneous nucleation regime did not change much of the surface roughness.
Furthermore, the influence of laser energy on the properties of excimer-laser-annealed (ELA) amorphous silicon (a-Si) and as-deposited polycrystalline silicon (poly-Si) films has been studied too. For the ELA poly-Si films, in the low energy region, the crystallinity decreased with the energy. After reaching the minimum, it increased to the maximum, and then dropped down. No SLG grains were found in the near-complete-melting regime. The largest grains were observed in the partial-melting regime. The largest grain size (100 nm) of ELA poly-Si was less than that of ELA a-Si (130 nm).
Finally, the effects of energy on the microstructure of amorphous silicon (a-Si) films annealed by two-step laser process were systematically investigated. For the low-crystallinity / small-grain films, which were formed after the first low-energy laser crystallization, the grain size decreased and then increased with the energy of second laser annealing. In contrast, for the high-crystallinity films, i.e. SLG-grain films, the grain size monotonously decreased with second laser energy increased. Two-step laser annealed poly-Si films revealed that fine grains were formed and extruded at the grain boundary after the second high-energy laser annealing. High performance poly-Si TFTs can be fabricated from the poly-Si films crystallized by low-energy annealing followed by second high-energy laser annealing. When the results were compared, the poly-Si TFT using the poly-Si film crystallized by single high-energy laser annealing showed poorer mobility and subthreshold swing.

Chinese abstract……………………………….……………….iii
English abstract………………...………………………………v
Acknowledgement……………….…………...………………viii
Contents…………………………..……………………………ix
Figure Captions……………………….………………………xiii
Table Lists………………………………………………..……xv
Vita (Chinese)
Publication list
Contents
Chapter 1 Introduction
1.1 Overview of thin film transistor technology.…………..…....…..1-1
1.2 Overview of laser crystallization technology…………....……...1-5
1.3 Dissertation……………..…………………….……..….....……1-8
1.4 Reference..…………………………..………….………...……1-11
Chapter 2 Experiment Details
2.1 Thin film deposition process……………………………………2-1
2.2 Excimer laser annealing process……………………....………..2-3
2.3 Poly-Si TFT Fabrication…………………………………..……2-3
2.4 Characterization of Si film…………………………..…………2-4
2.5 Electrical Properties of poly-Si TFTs………….……….………2-5
Chapter 3 Laser Crystallization using Semi-Gaussein Beam
3.1 Introduction………………………………………….………...3-1
3.2 Experiment..…………………………………….……………..3-4
3.3 Results and discussion…………………………………………3-6
3.3.1 Influence of laser energy on Si crystallization…………..3-6
3.3.2 Comparison of single shot and continuous scanning crystallization methods....................................…………..3-8
3.4 Summary…………………………………………….………..3-11
3.5 References……………………………………………………3-12
Chapter 4 Substrate Temperature Effects on the Structural Properties of ELA a-Si Films
4.1 Introduction………………………………………..…………..4-1
4.2 Experiment …………………………………………....………4-3
4.3 Results and discussion………………………………….……..4-5
4.3.1 Grain size and crystallinity analysis ………….………...4-5
4.3.2 Surface morphology analysis……………….…………..4-9
4.4 Summary……………………………………………………..4-14
4.5 Reference.……………………………………………………4-15
Chapter 5 Effects of Laser Energy on the Properties of Excimer-laser-annealed a-Si and As-deposited Poly-Si Films
5.1 Introduction……………………………………………………5-1
5.2 Experiment..……………………………………..……………..5-4
5.3 Results and discussion………………………………….………5-6
5.3.1 Optical Property Analysis of ELA Si Film…………...…..5-6
5.3.2 The crystallinity of ELA Si films……………….………..5-7
5.3.3 The surface morphology of ELA Si films………….…….5-9
5.3.4 The Growth Mechanism of ELA Si Films……………….5-11
5.3.5 Electrical Properties of Fabricated poly-Si TFTs………..5-15
5.4 Summary………………………………………………...…….5-17
5.5 Reference.………………………………………….….……...5-19
Chapter 6 Energy Effects of Two-step Laser Annealing on the Microstructure of Poly-Si Films
6.1 Introduction………………………………….………………….6-1
6.2 Experiment..……………………………………………………6-4
6.3 Results and discussion…………………………..……..……….6-6
6.3.1 Thin film structure analysis……………………...……….6-6
6.3.2 Electrical properties of fabricated poly-Si TFTs…..……6-11
6.4 Summary…………………………………………..………….6-13
6.5 Reference.………………………………………….….……..6-15
Chapter 7 Conclusions and Recommendations for Future Study
7.1 Conclusions……………………………………………………7-1
7.2 Suggestions for future work…………………………………...7-3
Figure Captions
Chapter 2
Fig. 2-1 The schematic of UHVCVD system…………………………..2-7
Fig. 2-2 FTIR spectrum of TEOS film deposited by the optimal conditions…………………………………………………..…2-8
Fig. 2-3 The schematic of the Excimer laser annealing system……..…2-9
Fig. 2-4 The schematic drawing of the poly-Si TFT process…………2-10
Fig. 2-5 The plane view and cross section of the fabricated poly-Si TFT…………………………………………………………..2-12
Chapter 3
Fig. 3-1 The energy distribution of semi-Gaussian beam…………….3-14
Fig. 3-2 The schematic diagram of continuous scanning (95% overlap)……………………………………………………....3-15
Fig. 3-3 The morphologies of crystallized region on the a-Si film…...3-16
Fig. 3-4 Energy profiles of the semi-Gaussein typed laser beam with different peak energy………………………………..……….3-17
Fig. 3-5 The SEM images of film structure and the schematic diagrams of grain size distribution of a-Si crystallized by the energy lower (a) and higher (b) than the energy caused the homogenous nucleation happen (EH)………………………………………………….3-18
Fig.3-6 The grain size v.s. pulse energy density for 100nm LPCVD a-Si annealed by single shot and continuous scanning………..…3-19
Fig.3-7 The same area will be annealed 20 times by various laser energy......................................................................................3-20
Chapter 4
Fig. 4-1 SEM images of Secco-etched poly-Si silicon films crystallized by single shot method. (a) RT+240, (b) 200 ℃+228, and (c) 400 ℃+228 mJ/cm2………..……………………………….……4-19
Fig. 4-2 The relative grain size of poly-Si samples crystallized by single shot method at RT, 200℃, and 400℃....................................4-20
Fig. 4-3 SEM images of Secco-etched poly-Si silicon films crystallized by continuous scanning method. (a) RT+195, (b) 200 ℃+175, and (c) 400 ℃+147 mJ/cm2………………………...………………4-21
Fig. 4-4 The relative grain size of poly-Si samples crystallized by single shot method at RT, 200℃, and 400℃……………………..4-22
Fig. 4-5 The surface roughness (Ra) of ELA poly-Si films as a function of laser energy densities at substrate temperature of RT, 200℃, and 400℃………………………………………………………4-23
Fig. 4-6 The AFM images of ELA poly-Si silicon surface for various laser energy densities and temperatures: (a) as-dep., (b) RT+111 mJ/cm2, and (c) 400℃+111 mJ/cm2………………………4-24
Fig. 4-7 The surface morphologies of ELA poly-Si for various laser energy densities and temperatures: (a) RT+195 mJ/cm2 and (b) 400℃+147 mJ/cm2…………………………….…………4-25
Chapter 5
Fig. 5-1 The reflectivity spectra of as-deposited LPCVD a-Si film, as-deposited UHVCVD poly-Si film, and laser annealed UHVCVD poly-Si films……………………………………5-21
Fig. 5-2 The crystallinities of ELA LPCVD a-Si film and the ELA as-depsited UHVCVD poly-Si film as a function of laser energy densities. The crystallinity was determined by measuring the Si(111) peak height of X-ray diffraction spectra…………………...5-22
Fig. 5-3 SEM images of Secco-etched ELA a-Si films after annealing at various laser energy densities: (a) 111, (b) 195, and (c) 233 mJ/cm2……………………………………………………...5-23
Fig. 5-4 SEM images of Secco-etched ELA UHVCVD poly-Si films after laser crystallization at various energies: (a) as-deposited., (b)134, (c) 157, (d) 184, and (e) 233 mJ/cm2………………………..5-24
Fig.5-5 The surface roughness (Ra) of ELA a-Si film and poly-Si films as a function of laser energy densities…………………………5-25
Fig.5-6 The AFM images of ELA a-Si films surface after annealing at various laser energy densities: (a) as-deposited, (b) 157, and (c) 195 mJ/cm2…………………………………………………5-26
Fig. 5-7 The AFM images of ELA UHVCVD poly-Si films surface after annealing at various laser energy densities: (a) as-deposited, (b) 184, (c) 209, and (d) 233 mJ/cm2………………………..…5-27
Fig.5-8 SEM images of ELA UHVCVD poly-Si films after laser crystallization at various energies: (a) as-deposited., (b) 184, and (d) 233 mJ/cm2………………………………………..……5-28
Fig.5-9 Schematic diagrams of poly-Si films annealed by various laser energy conditions.
(a) As-deposited UHVCVD poly-Si film
(b) Low-energy annealed poly-Si film
(c) Medium-energy annealed poly-Si film
(d) High-energy annealed poly-Si film…………………………5-29
Fig.5-10 Id-Vg characteristics of the low-temperature poly-Si TFT fabricated by various methods. (a) UHVCVD poly-Si + ELA (optimal condition: 184 mJ/cm2), (b) UHVCVD poly-Si, (c) LPCVD a-Si + ELA (optimal condition: 195 mJ/cm2), and (d) LPCVD a-Si + SPC (600℃, 24hrs). …………………………….………………..5-30
Chapter 6
Fig. 6-1 The crystallinity of single laser annealed poly-Si films as a function of laser energies.
L: 111 mJ/cm2, average grain size = 50 nm
M: 157 mJ/cm2, average grain size = 80 nm
H: 195 mJ/cm2, average grain size =130 nm…………………6-17
Fig. 6-2 The effects of E1st and E2nd on the grain size of two-step laser annealed poly-Si films………………………………………6-18
Fig. 6-3 The SEM images of the two-step laser annealed poly-Si films crystallized by low E1st (111 mJ/cm2). (a) 111+0, (b) 111+157, (c) 111+195 mJ/cm2……………………………………….……6-19
Fig. 6-4 The SEM images of the two-step laser annealed poly-Si films crystallized by medium E1st (157 mJ/cm2). (a) 157+0, (b) 157+111, and (c) 157+195 mJ/cm2. (Secco-etched)…………………..6-20
Fig. 6-5 The SEM images of two-step laser annealed poly-Si films crystallized by high E1st (195 mJ/cm2). (a) 195+0, (b) 195+157, and (c) 195+195 mJ/cm2. (Secco-etched)……………………6-21
Fig. 6-6 The cross section image of two-step laser annealed poly-Si (195+195 mJ/cm2) film structure……………………………6-22
Fig. 6-7 Schematic diagrams of extrusions formation.
(a) Large poly-Si grains
(b) Grain boundary melting
(c) New grains formed and extruded at grain boundary………..6-23
Fig. 6-8 Comparison of mobility characteristics for two-step laser annealed poly-Si TFTs………………………………………6-24
Fig. 6-9 Comparison of subthreshold characteristics for the two-step laser annealed poly-Si TFTs…………….......................................6-25
Table Lists
Chapter 1
Table 1-1 Laser system for Si crystallization…………….…………..1-16
Table 1-2 Commercial laser annealing system……………………….1-17
Chapter 4
Table 4-1 Effects of substrate temperature on maximum grain size and the required laser rgy to obtain the maximum grain size…………………………………………………..………4-26
Table 4-2 Performance of N-channel ELA poly-Si TFTs fabricated by the optimal condition at RT, 200, and 400℃……………4-27
Chapter 5
Table 5-1 Material constants of l-Si, a-Si, and c-Si……….…….…5-31
Chapter 6
Table 6-1 Electrical properties of the fabricated poly-Si TFTs………6-26

Reference
1. C. H. Fa and T. T. Jew, IEEE Trans. on Electron Devices, 13, p. 290 (1966).
2. S. Morozumi, K. Oguchi, S, Yazawa, T. Kodaira, T. Kodaira, H. Ohshima, and T. Mano, SID Dig., p. 156 (1983).
3. Y. Aoki, T. Iizuka, M. Karube, T. Tsunashima, S. Ishizawa, K. Ando, H. Skurai, T. Ejiri, T. Nakzono, M. Kobayashi, H. Sato, N. Ibaraki, M. Sasaki, N. Harada, SID 99 Dig.,p. 176 (1999).
4. A. Mimura, N. Knishi, K. Ono, J-I Ohwada, Y. Hosokawa, Y. A. Ono, Y. Suzuki, k. Miyata, and H. Kawakami, IEEE Trans. Elec. Dev., 36, p. 351 (1989).
5. A. G. Lewies, D. D. Lee, and R. H. Bruce, IEEE J. Solid-State Circuits, 27, p. 1833 (1992).
6. A. G. Lewis, I-W Wu, T. Y. Huang, A. Chiang, and R. H. Bruce, IEDM 90, p.843 (1990).
7. T. Marita, Y. Yamamoto, M. Itoh, H. Yoneda, Y. Yamane, S. Tsuchimoto, F. Funa, and K. Awane, IEDM Tech. Dig., p. 841 (1995).
8. Simon W-B. Tam, Yojiro Matsueda, Hiroshi Maeda, Mutsumi Kimura, Tatsuya Shimoda, and Piero Migliorato, IDW ’99, Sendai Int. Center, Sendai, Japan (1999).
9. S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundaresan, M. Elahy, G. P. Polack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, and H. W. Lam, IEEE Trans. Elec. Dev., 32, p. 258 (1985).
10. T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanaka, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takada, and T. Nagano, IEEE Trans. Elec. Dev., 42, p. 1305 (1995).
11. K. Yoshizaki, H. Takahashi, Y. Kamigaki, T. Yasui, K. Komori, and H. Katto, ISSCC Digest of Tech. Papers, p. 166 (1985).
12. N. D. Young, G. Harkin, R. M. Bunn, D. J McCulloch, and I. D. French, IEEE Trans. Elec, Dev., 43, p. 1930 (1996).
13. T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, IEEE Trans, Elec. Dev., 38, p. 1086 (1991).
14. Y. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, IEEE Solid State Circuit Conference (ISSCC), p. 266 (1998).
15. N. Yamauchi, Y. Inaba, and M. Okamura, IEEE Photonic Tech. Lett., 5, p. 319 (1993).
16. S. Seki, O. Kogure, and B. Tsujiyama, IEEE Elec. Dev. Lett., 8, p. 368 (1987).
17. T. J. Little, K. I. Takahara, H. Koike, T. Nakazawa, I. Yudasaka, and H. Ohshima, Jpn. J. Appl. Phys., 30, p. 3724 (1991).
18. F. Emoto, K. Senda, E. Fujii, A. Nakamura, A. Yamamoto, Y. Yamamoto, Y. Uemoto, and G. Kano, IEEE Trans. Elec. Dev., 37, p. 1462 (1990).
19. A. Pleshinger, J. Lutz, F. Kuchar, H. Noll, and M. Pippan, J. Appl. Phys., 81, p. 6749 (1997).
20. C. A. Dimitriadis, P. A. Coxon, L. Dozsa, L. Papadimitriou, and N. Economou, IEEE Trans. Elec. Dev., 39, p. 598 (1992).
21. M. K.Hatalis and D. W. Greve, IEEE Elec. Dev. Lett., 8, p. 361 (1987).
22. M. Bonnel, N. Duhamel, L. Haji, B. Loisel, and J. Stoemenos, IEEE Elec. Dev. Lett., 14, p. 551 (1993).
23. K. Park, S. Batra, S. Banerjee, G. Lux, and R. Manukonda, Mat. Res. Soc. Symp. Proc., 182, p. 141 (1990).
24. S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R. Sundaresan, IEEE Elec. Dev. Lett., 11, p. 194 (1990).
25. Z. Jin, G. A. Bhay, M. Yeung, H. S. Kwok and M. Wong, J. Appl. Phys., 84, p. 194 (1998).
26. S. W. Lee, Byung-II Lee, T. K. Kim and S. K. Joo, J. Appl. Phys., 85, p. 7180 (1999).
27. C. Hayzelden and J. L. Batstone, J. Appl. Phys., 73, p. 8279 (1993).
28. A. Chiang, I. W. Wu, M. Hack, A. G. Lewis, T. Y. Huang and C.C. Tsai, Extended Abstract of SSDM 91, p. 586 (1991).
29. W. G. Hawkins, IEEE Trans. Electron Devices ED-33, p. 477 (1986).
30. M. Yuki, K. Masmo and M. Kunigita, SID 89 Dig., p. 143 (1989).
31. H. Kakinuma, M. Mohri and T. Tsuruoka, J. Appl. Phys., 77, p. 646 (1995).
32. W. G. Hawkins, IEEE Trans. Elec. Dev., ED-33, p. 477 (1986).
33. A. Chiang, I. W. Wu, M. Hack, A. G. Lewis, T. Y. Huang and C. C. Tsai, Extended Abstract of SSDM 91, p. 586 (1991).
34. T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka and S. Tsuda, J. Non-Crystalline Solids, 198-200, p. 940 (1996).
35. P. Baeri and E. Rimini, Mat. Chem. and Phys., 46, p. 169 (1996).
36. S. R. Stiffler, Michal O. Thompson, and P. S. Peercy, Phys. Rev. Lett., 60, p. 2519 (1988).
37. T. Sameshima and S. Usui, J. Appl. Phys., 70, p. 1281 (1991).
38. J. S. Im and H. J. Kim, Appl. Phys. Lett., 64, p. 2303 (1994).
39. G. K. Giust and T. W. Sigmon, Appl. Phys. Lett., 70, p. 767 (1997).
40. S. D Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, J. Appl. Phys., 82, p. 4085 (1997).
41. H. J. Kim and J.S Im, Mat. Res. Soc. Symp. Proc., 321, p. 665 (1994).
42. I. Asai, N. Kato, M. Fuse, and T. Hamano, Jpn. J. Appl. Phys., 32, p. 474 (1993).
43. D. J. McCulloch and S. D. Brotherton, Appl. Phys. Lett., 66, p. 2060 (1995).
44. D. K. Fork, G. B. Anderson, J. B. Boyce, R. I. Johnson, and P. Mei, Appl. Phys. Lett., 68, p. 2138 (1996).
45. H. Kuriyama, T. Nohda, Y. Aya, T. Kuwahara, K. Wakisaka, S. Kiyama, S. Tsuda, Jpn. J. Appl. Phys., 33, p.5657 (1994).
46. T. Sameshima, A. Kohno, M. Sekiya, M. Hara, N. Sano, Appl. Phys. Lett., 64, p. 1018 (1994).
47. P. Lagagneux, F. Petinot, O. Huet, F. Plais, C. Reita, D. Pribat, R. Carluccio, A. Pecora, L. Mariucci, G. Fortunato, Proc. ESSDERC 96, Editions Frontiers, p. 1071 (1996).
48. V. V. Gupta, H. J. Song, J. S. Im, Appl. Phys. Lett., 71, p. 99 (1997).
49. R. F. Wood, G. A. Geist, Phys. Rev. Lett., 57, p. 73 (1986).
50. S. Loreti, D. della Sala, and M. Garozzo, Micron, 31, p. 2999 (2000).
51. H. J. Kim, J. S. Im, Appl. Phys. Lett., 68, p. 1513 (1996).
52. L. Mariucci, R. Carluccio, A. Pecora, V. Foglietti, G. Fortunato, P. Legagneux, D. Pribat, D. Della Sala, J. Stoemenos, Thin Solid Films, 337, p. 137 (1999).
53. K. Ishikawa, M. Ozawa, C. Oh, M. Matsumura, Jpn. J. Appl. Phys., 37, p. 731 (1998).
54. D. H. Choi, K. Shimizu, O. Sugiura, M. Matsumura, Jpn. J. Appl. Phys., 31, p. 4545 (1992).
55. R. S. Sposili, J. S. Im, Appl. Phys. Lett., 69, p. 264 (1996).
56. R. F. Wood, G. A. Geist, Phys. Rev. B, 34, p. 2606 (1986).
57. M. Hatano, S. Moon, M. Lee, K. Suzuki, and C. P. Grigoropoulos, J. Appl. Phys., 87, p. 36 (2000).
58. J. S. Im, H. J. Kim, and M. O. Thompson, Appl. Phys. Lett., 63, p. 1969 (1993).
59. L. Ley, The Physics of Hydrogenated amorphous Silicon II, edited by J. D. Joannopoulus and G. Lucovsky (Springer-Verlag, New York, 1984), p. 61.
60. T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, IEEE Trans. Elec. Dev., 36, p. 1929 (1989).
61. H. Zhang, N. Kusumoto, T. Inushima, and S. Yamazaki, IEEE Elec. Dev. Lett., 13, p. 297 (1992).
62. K. Shimizu, O. Sugiura, and M. Matsumura, IEEE Trans. Elec. Dev., 40, p. 112 (1993).
63. T. Sameshima and S. Usui, J. Appl. Phys., 74, p. 6592 (1993).
64. H. J. Kim, J. S. Im, and M. O. Thompson, Mat. Res. Soc. Symp. Proc., 283, p. 703 (1993).
65. N. H. Nickel, G. B. Anderson, and R. I. Johnson, Phy. Rev. B, 56, p. 56 (1997).
66. E. Fogarassy, S. de Unamuno, P. Legagneux, F. Plais, D. Pribat, B. Godard, and M. Stehle, Thin Solid Films, 337, p. 143 (1999).
67. A. Marmorstein, A. T. Voutsas, and R. Solanki, J. Appl. Phys., 82, p. 4303 (1997).
68. Shimizu, S. Imai, O. Sugiura and M. Matsumura, Jpn J. Appl. Phys., 30, p. 2664 (1991).
69. G. Willams, D. Sands, R. M. Geatches, and K. J. Reeson, J. Appl. Phys. 69, p. 1623 (1996).
70. C. H. Kuo, I. C. Hsieh, D. K. Schroder, S. Chen, T. W. Sigmon, J. Appl. Phys., 71, p. 359 (1997).
71. G. A. N. Connel, Amorphous Semiconductors, edited by M. H. Brodsky (Springer-Verlag, NewYork, 1979), p. 91.
72. H. R. Philip and E. A. Taft, Phys. Rev., 120, p. 37 (1960).
73. S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, J. Appl. Phys., 82, p. 15 (1997).
74. D. H. Lowndes, R. F. Wood, and J. Narayan, Phys. Rev. Lett., 52, p. 561 (1984).
75. T. Noguchi, A. J. Tang, J. A. Tsai, IEEE Trans. Elec. Dev., 43, p. 1454 (1996).
76. L. Pichon, F. Raoult, K. Mourgues, K. Kis-Sion, T. Mohammed-Brahim and O. Bonnaud, Thin Solid Films, 296, p. 133 (1997).
77. T. Sameshima, Solid State Phenomena, 37-38, p. 269 (1994).
78. S. Loreti, D. della Sala, M. Garozzo, Micron, 31, p. 299 (2000).
79. A. M. Marmorstein, A. T. Voutsas, and R. Solanki, Solid-State Elec., 43, p. 305 (1999).
80. Y. C. Chen, Y. S. Wu, I. C Tung, C. W. Chao, M. S. Feng, and H. C. Cheng, Appl. Phys. Lett., 77, p. 2521 (2000).
81. R. Carluccio, J. Stoemenos, G. Fortunato, D. B. Meakin, and M. Bianconi, Appl. Phys. Lett., 66, p. 1394 (1995).
82. C. T. Angelis, C. A. Dimitriadis, M. Miyasaka, F. V. Farmakis, G. Kamarinos, J. Brini, and J. Stoemenos, J. Appl. Phys., 86, p. 4600 (1999).
83. G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, S. Christiansen, M. Albrecht, and H. P. Strunk, J. Appl. Phys., 85, p. 4010 (1999).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔