跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃穩駿
研究生(外文):W. J. Huang
論文名稱:結合光輔助濕式蝕刻和誘發耦合電漿蝕刻之後的氮化鎵蕭基特性之研究
論文名稱(外文):GaN Schottky Characteristics After Hybrid Photo-enhanced Wet and Inductively Coupled Plasma Etch
指導教授:馮明憲  張 翼  
指導教授(外文):M. S. FengEdward Y.Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:77
中文關鍵詞:氮化鎵蕭基光輔助濕式蝕刻誘發耦合電漿蝕刻
外文關鍵詞:GaNSchottkyPECICP
相關次數:
  • 被引用被引用:1
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
此論文探討在經過光輔助濕式蝕刻(PEC)結合誘發耦合電漿蝕刻(ICP)後的AlGaN 和GaN的蕭基特性。所使用的氮化鎵晶體是以低壓有機金屬化學氣相磊晶法成長在Al2O3基板上。光輔助濕式蝕刻使用KOH蝕刻液並予以100mW/cm2 的汞燈照光,ICP的反應氣體則是Cl2和N2。蕭基金屬使用Ni/Au (100nm/100nm) 而歐姆金屬則使用Al (100nm)。
一般而言,氮化鎵在ICP中的蝕刻率為300nm/min、粗糙度為1.7nmm。而在濕式蝕刻中,蝕刻速率為0.64nm/min、粗糙度為0.32nm。乾式蝕刻的蝕刻率快很多,但相對的也會比較粗糙。
在600W ICP 蝕刻300秒後,氮化鎵蕭基的理想因子(n)為1.57,能障高為0.65eV,崩潰電壓為0.75V。然而在ICP 蝕刻後再加上光輔助濕式蝕刻30分鐘,可以得到蕭基理想因子降為1.11,能障高升高到0.78eV,且崩潰電壓升高為3.8V。此電性的改善可解釋為濕式蝕刻移除了ICP蝕刻造成的損壞結構。
整體而言,結合乾室與濕式蝕刻可以兼顧高蝕刻速率又可以得到較小損壞的表面。

GaN and AlGaN Schottky contact characteristics after hybrid photo-enhanced wet etch and Inductively coupled plasma etch (ICP) is studied. KOH solution and 100mW/cm2 UV illumination by Hg arc lamp was used for photo-enhanced wet etch. Gas mixture of Cl2 and N2 was used for ICP etch. The Schottky metal used in this study is Ni/Au (100nm/100nm) and the Ohmic metal used is Al (100nm).
Typical etch rates are 0.64 nm/min and 300nm/min with a roughness of 0.32nm and 1.70nm for wet and dry etch respectively. The ICP process etches more rapidly but the etched surfaces are rougher when compared to the wet-etch process.
After ICP etch at 600 watt for 300sec, the GaN schottky diode for example has an ideality factor n=1.57 and the barrier height B=0.65 eV ,and breakdown voltage VB=0.75V. However, for the ICP etched sample followed by photo-enhanced wet chemical etch for 30mins, the sample has an ideality factor n=1.11, and the barrier height B=0.78 eV, and the breakdown voltage VB is recovered to 3.8V. The study indicates that the wet chemical etch can remove the damage caused by ICP etch. Overall, the hybrid dry/wet etch process is a high etch rate process and cause very low damages on the etched surface.

Chapter 1. Introduction
1.1 GaN material…………………………………………..……..1
1.2 Selective etch using photoenhanced chemical etch……….2
1.3 Selective etch using inductively coupled plasma……….3
1.4 Schottky contacts to AlGaN and n-GaN……………5
Chapter 2. Experimental
2.1 GaN growth by MOCVD……………………………………..8
2.1.1 MOCVD Reactor……………………….……..8
2.1.2III-nitrides growth…………………….…………..9
2.2 GaN etch……………………………………..…..10
2.2.1 ICP etch and Wet etch ………………….….…10
2.2.2 ICP etch followed by wet etch ...........12
2.3 Formation of metal contact ………………….……..…13
2.3.1 Schottky metal and Ohmic metal deposition …13
2.4 Analysis ...………………………..15
2.4.1 Electrical Characterization ………….……….…….15
2.4.2 Material Characterization ……….……...…….16
Chapter 3. Results and discussion
3.1 Selective etch result of ICP……………….…….….…….18
3.2 Selective etch result of wet etch……………..…….…..20
3.3 n-GaN Schottky Characteristics after hybrid wet etch
and ICP …22
3.3.1 n-GaN Schottky Characteristics after hybrid wet etch
and ICP for 1.5um etch depth……………………………22
3.3.2 n-GaN Schottky Characteristics after hybrid wet etch
and ICP for 0.3um etch depth………….24
3.4 AlGaN Schottky Characteristics after hybrid wet etch
and ICP……….26
Chapter 4. Conclusions……………………………………………………….28

(1) T. G. Zhu, D. J. H. Lambert, and B. S. Shelton, APL volume 77, number 18, (2000.1), “High-voltage mesa-structure GaN Schottky rectifiers processed by dry and wet etch”
(2) J. I. Pankove, MRS Symp. Proc vol 162, nimber 515, (1990)
(3) C.Youtsey, I. Adesida, and G. Bulman, APL.71(15), (1997.1), “Highly anisotropic photoenhanced wet etching of n-type GaN”
(4) M.S.Minsky, M. White, and E. L. Hu, APL.68(11), (1996.5), “Room-temperature photoenhanced wet etching of GaN”
(5) C.Youtsey, I. Adesida, and L. T. Romano, APL.72(5), (1998.2), “Smooth n-type GaN surfaces by photoenhanced wet etch”
(6) J. A. Bardwell, J. B. Webb, and H. Tang, Electrochemical Society Proceedings Volume 2001-1,(2001), “The Mechanism of Photoenhanced Wet Etching of GaN”
(7) Jewon Lee, Hyun Cho, and David C. Hays, IEEE Journal of selected topic in quatum electronics, VOL. 4, NO. 3, (1998.5), “Dry Etching of GaN and Related Materials:Comparison of Techniques”
(8) S. A. Smith, C. A. Wolden, and W. V. Lampert, IEEE 349-352, (1998), “Selective and non-selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma”
(9) R. J. SHUL, G. B. McClellan, and S. A. Casalnuovo, APL. 69(8), (1996.8), “Inductively coupled plasma etching of GaN”
(10) HYUN. CHO, C. B. Vartuli, and C. R. Abernathy, Solid State Electronics Vol. 42, NO. 12. Pp. 2277~2281, (1998), “Cl2-Based Dry Etching of the AlGaInN System in Inductively Coupled Plasmas”
(11) D. Qiao, L. S. Yu, and S. S. Lau, Joural of Applied Physics vol 87, number 2, (2000.1), “Dependence of Ni/AlGaN Schottky barrier height on Almole fraction”
(12) X. A. Cao, S. J. Pearton, and Senior Member, IEEE TRANSACTIONS ONELECTRON DEVICES, VOL 47, NO. 7, (2000.7), “GaN N- and P-Type Schottky Diodes:Effect of Dry Etch Damage”
(13) Thorsten U. Kampen, and Winfried Monch, Applied Surface Science 117/118(1997)388-389, ‘Barrier heights of GaN Schottky contacts’

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top