(3.238.186.43) 您好!臺灣時間:2021/03/05 22:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳錦裕
研究生(外文):Jin-Yu Wu
論文名稱:含N和Si超硬寬能隙碳基新光電材料之特性及製程
論文名稱(外文):Properties and processes of superhard wide-band -gap carbon-based novel optoelectronic materials containing N and Si
指導教授:郭正次
指導教授(外文):Cheng-Tzu Kuo
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:153
中文關鍵詞:氮化碳矽氮化碳鑽石鍍膜場效發射能隙
外文關鍵詞:cabon nitridesilicon carbon nitridediamondcoatingfield emissionband gap
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
含N和Si之碳基晶體材料被預期可能擁有許多獨特性質,如最高硬度、寬能隙及化學性質穩定等,但是目前並沒有方法能夠成功地合成出包含二元C、N或三元Si、C、N新晶體塊材來量測其性質,而且目前最熱門研究題材之一為碳奈米管(CNTs),它也是碳基材料之一種。本研究想要澄清製作各種碳基材料包括二元及三元晶體材料之主要製程參數。
研究大致分為四部份,第一部份是比較三種具代表性商業方法所製作鑽石厚膜的優缺點,結果顯示DC arc法沉積之膜具有最高沉積速率及最高壓應力。MPCVD 及HFCVD法可沉積出透明膜,膜之透明度可藉由消除膜中非鑽石成分含量來改善,HFCVD法之沉積膜具有最低壓應力,MPCVD法之膜則具最低表面粗度。不同沉積法之膜其性質也不同,此與沉積溫度及電漿中成分有關聯。
第二部份是以兩種具有SP3鍵結結構,與氮化碳之預測結構相同之生化材料當靶材,利用離子束濺射方法濺射沉積。此目的想要複製部分靶材鍵結結構到沉積膜,以降低反應所需之活化能。結果顯示此想法是可行的,沉積膜內含有足以讓XRD量測到之大量晶體相 (波峰在d= 0.3276 nm (2q= 27.20°)),以及得到比文獻值(0.2 ~ 0.35)高之成分N/C比例值(= 0.5)。薄膜結構及特性似乎與所用之基材材料(摻硼Si(100)、Si(111)晶圓、AISI 300不鏽鋼、銅、銀、鈷及鎳等)無關。此結果暗示,由改變不同靶材及沉積條件來操控化學鍵結資訊,是可成為一種探索氮化碳晶體形成機制之有效線索。
第三部份是用ECR-PVD法在-50 V基材偏壓及CH4、N2(CH4/N2= 1/4 or 1/8 sccm/sccm) 氣源條件下沉積Si-C-N薄膜,結果顯示沉積膜是不含Si-N鍵結之無晶質結構,其膜中含氧成分大於20%則不具場效發射性質。薄膜奈米硬度可高至39 GPa。從FTIR鍵結分析中,薄膜具有C=N, CºN及 Si-C化學鍵。在較高靶材偏壓、較高沉積溫度、較低背景氣壓及較低含氧量條件下,薄膜具有較高硬度。在起始電流密度門檻1 mA/cm2下,薄膜最低起始電場強度是 12 V/mm,而最大電流密度為2.8 mA/cm2。
第四部份是在有添加固態矽源、八種不同介層及不同前處理條件下,以MPCVD法沉積碳基材料。不同成長階段沉積膜有用TEM檢 測,結果顯示不同成長階段之膜其結構及成分皆不相同。從基材表面算起,沉積層順序為SiO2 (~ 100 nm)/ 多晶 Si-C-N (~ 100 nm) / (a-, b- and t-Si3N4 晶體) (2 mm) / 無晶質碳膜。膜中Si3N4晶體的形成與Si3N4粉末刮搔前處理增加成核密度結果一致,此結果亦解釋了單檢驗表面而不用斷面分析的文獻錯誤結論。氣源中加8 at. % 氫氣之效果能降低晶體尺寸及成長速率,與文獻合成鑽石之結果相同。介層之作用基本上能偏移CL波長到更低方向,也就是能增加薄膜能隙,換句話說,介層能應用在調整薄膜之能隙及場效發射性質,其中以SiC介層具有最大場效發射值(6.3 mA/cm2 在電場為 20 V/mm時)。
It was proposed that the crystalline carbon-based materials containing N or Si may possess many unique properties, such as, highest hardness, wide-band-gap and chemical inertness, but there are no successful methods to be able to synthesize the bulk new crystalline materials containing binary C、N or ternary Si、C、N to measure their properties. Furthermore, One of the hottest topics at present is on carbon nanotubes (CNTs), which are also one of the carbon-based materials. In this study, it was intended to clarify the main process parameters to fabricate various carbon-based materials including various binary and ternary crystalline materials.
This study can be roughly divided into four parts. The first part was to compare the advantages and drawbacks of three typical commercial methods to fabricate the diamond thick films. The results show that the DC arc method possesses highest growth rate and the highest residual compressive stress in the deposited films. The MPCVD and HFCVD methods can deposit the transparent films, where the transparency of the films can be improved by diminishing the non-diamond content in the films. The HFCVD-synthesized films possess the lowest compressive residual stress, and the MPCVD-synthesized films the smallest surface roughness. The differences in properties for different deposition methods are related to deposition temperature and species in plasma.
The second part was to use ion beam sputtering method with two different bio-molecular materials as targets, which possess the same sp3 bonding structure as the proposed structure of carbon nitrides. It was intended to partly duplicate the bonding structure from the target material to the deposited films to minimize the required activation energy. The results indicate that the idea is feasible, and the deposited films contain enough amounts of crystalline phases to be detected by XRD (high peak at d= 0.3276 nm (2q= 27.20°)), and the higher N/C ratio (= 0.5) than the reported values (0.2 ~ 0.35) in the literature. The film structures and properties seem to be independent of the substrate materials (B-doped Si(100) wafer, Si(111) wafer, AISI 300 stainless steel, Cu, Ag, Co and Ni). The results imply that manipulation of chemical bonding information by changing different target materials and deposition conditions can be an effective key to explore the formation mechanisms of crystalline carbon nitrides.
The third part was to synthesize Si-C-N films by ECR-PVD under -50 V substrate bias and with CH4 and N2 (CH4/N2= 1/4 or 1/8 sccm/sccm) as source gases. The results indicate that the deposited films are amorphous Si-C-N with no Si-N bonding, and the films with O% > 20 at. % have no field emission. The nano-hardness of the films can go up to 39 GPa. Films possess C=N, CºN, and Si-C chemical bonding in FTIR spectrum. Under higher target bias voltage, higher deposition temperature, lower base pressure and lower oxygen %, the films possess higher hardness. The lowest turn-on field intensity is 12 V/mm at threshold field 1 mA/cm2 and maximum current density is 2.8 mA/cm2.
The fourth part was to synthesize the carbon-based materials by MPCVD, adding additional Si solid source and using eight different buffer layers and pretreatments. The different stages of the deposited films were examined by TEM. The results show that the structures and compositions are different at different growth stages. The sequence of coating materials on the substrate in order of layers from the substrate surface is SiO2 (~ 100 nm)/ polycrystalline Si-C-N (~ 100 nm) / (a-, b- and t-Si3N4 crystals) (2 mm) / a-C film. The Si3N4 crystal formation in the films is in agreement with the Si3N4 scratching pretreatment to enhance its nucleation density. The results also explain that the false conclusion from merely examining the film surface instead of the cross section is often drawn in the literature. Effect of adding 8 at. % H2 in the source gases can cause a decrease in crystal size and growth rate, as indicated also in the literature for diamond synthesis. Effect of buffer layers is essentially to shift the wave number to the lower side, i.e. to increase the band-gap of the films. In other words, the buffer layer application can be manipulated to tune the band-gap and field emission properties of the films, where the SiC buffer gives the best field emission properties (6.3 mA/cm2 at 20 V/mm).
中文摘要………………………………………………………………Ⅰ
英文摘要……………………………………………………………….IV
致謝………………………………………………………………….VII
目錄…………………………………………………………………..VIII
符號表………………………………………………………….…...…XII
表目錄.…………………………………………………….………….XIII
圖目錄………………………………………………………….…….XIV
第一章 前言……………………………………………………….…….1
第二章 文獻回顧………………………………………..…………..…..3
2.1 平面顯示技術之背景說明……………………………….……...3
2.2 場效發射顯示材料…………….…………………….…….…….5
2.3 碳基材料陰極激光效應………………………………………6
2.4 碳基材料拉曼效應………………………………………6
2.5 碳材料之種類及其合成機制………………….…………...8
2.5.1鑽石………………………………………………………9
2.5.2石墨……………………………………………………..14
2.5.3 C60與碳奈米管……………...…………………...…..…15
2.5.4 其他碳材……………………………………………….19
2.6 C-N二元薄膜之理論晶體結構及理論強度之估算…………21 2.7 C-N二元薄膜之合成技術……………………………………27
2.8 Si-C和Si-N二元矽化物合成介紹…………………………..28
2.8.1 碳化矽……………………….………………….…28
2.8.2 氮化矽………………………….……..………………..29
2.9 Si-C-N三元薄膜之合成方法……………….………………...30
薄膜之結構、成份與鍵結……………..…………………….32
2.10 沉積反應機制流程……………………………………...…….33
第三章 實驗方法…………………………………………………35
3.1 三種主要商用鑽石厚膜之分析方法…………………………...35
3.2 生物分子為原料合成C-N晶體之方法………………………...36
3.2.1 實驗流程及沉積系統………………………………...…36
3.2.2 靶材製作………………………………………...………37
3.2.3 沉積條件………………………………………………...37
3.3 微波ECRPVD及MPCVD法沉積二元與三元Si-C-N薄膜….38
3.3.1 實驗流程……………………………...…………………38
3.3.2 微波ECR物理氣相沉積……………………….……….38
3.3.2.1 沉積系統………………………………………..39
3.3.2.2 沉積條件………………………………………..39
3.3.2.3 沉積步驟………………………………………..40
3.3.3 微波電漿化學氣相沉積………..………………………40
3.3.3.1 沉積系統………………………………………..40
3.3.3.2 沉積條件……………………………….……… 41
3.3.3.3 沉積步驟………………………………...…….. 42
3.4 薄膜特性分析及儀器…………………………………………...43
結果與討論………………..……..……………………………………..49
第四章 三種主要商用鑽石厚膜製程之特性比較……………………49
4.1鑽石厚膜的形貌及透明度.…………………………49
4.2 鍵結與應力……………………………………...…...……51
4. 3 結構及晶格常數………………………………..……...…53
4. 4 結論……………………………………………………….54
第五章 生物分子材料合成C-N 晶體……………...……………..56
5.1靶材對沉積之影響…………….….………………….…....56
5.2 N/C 原子比例…………………….…………………......57
5.3 氮碳之鍵結狀態…………………………….………..…...58
5.4 氮化碳之晶體結構及形貌……………………….……….59
5.5 結論…………………………………………………….….60
第六章 微波ECRPVD及MPCVD法合成二元及三元
Si-C-N薄膜………………………………….….………..62
6.1 薄膜之成份……………………………………………...62
6.2 薄膜之形貌與鍵結…………………………………..….64
6.3 薄膜之能隙……………….……………………………..69
6.4 薄膜之奈米機械性質…………………………………...71
6.5 薄膜之場效發射性質……………………………….…..72
6.6 MPCVD沉積Si-C-N之成長機制…………………….74
6.7 Si3N4粉末前處理對Si-C-N沉積的影響……………..76
6.8 結論……………………………………………………...77
第七章 Si、C、N三元相圖及各種晶體之沉積參數範圍……..….80
第八章 總結論………………………………….…………….……...81
第九章 未來展望……………………...……...…………………….…83
參考文獻……………………………………………………………..84
表 ………………………………………………….………………..…93
圖 ………………………………………………….………....………106
1. Badzian, A., T. Badzian, W. D. Drawl and R. Roy, Diamond and Related Materials 7 (1998) 1519-1525, “Silicon carbonitride: a rival to cubic boron nitride”.
2. Baglio, J. A., B. C. Farnsworth, S. Hankin, G. Hamill, D. O’Neil, Thin Solid Films, 212 (1992) 180-185, “Studies of stress related issues in microwave CVD diamond on <100> silicon substrates”.
3. Banholzer, W., Surface and Coatings Technology, 53 (1992) 1-12, “Understanding the mechanism of CVD diamond”.
4. Barbadillo, L., F. J. Gómez, M. J. Hernández and J. Piqueras, Applied Physics A 68 (1999) 603-607, “Nitrogen incorporation in amorphous SiCN layers prepared from electron cyclotron resonance plasmas”.
5. Bendeddouche, Abderrahim, René Berjoan, Eric Bêche and Roger Hillel, Surface and Coatings Technology 111 (1999) 184-190, “Hardness and stiffness of amorphous SiCxNy chemical vapor deposited coatings”.
6. Berman, R., Physical Properties of Diamond, Clarendon Press, Oxford, 1965.
7. Besling, W. F. A., A. Goossens, B. Meester and J. Schoonman, Journal of Applied Physics 83 (1998) 544-553, “Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films”.
8. Bhusari, D.M., C.K. Chen, K.H. Chen, T.J. Chuang, L.C. Chen and M.C. Lin, Journal of Material Research 12 (1997) 322-325, “Composition of SiCN crystals consisting of a predominantly carbon-nitride network”.
9. Bonard, J. M., R. Kurt, C. Klinke, Chemical Physics letters, 343 (2001) 21-27, “Influence of the deposition conditions on the field emission properties of pattemed nitrogenated carbon nanotube films”.
10. Bousetta, A., M. Lu, A. Bensaoula, et al., Appl. Phys. Lett., 65 (1994) 696, “Formation of Carbon Nitride Films on Si(100) Substrates by Electron-Cyclotron-Resonance Plasma-Assisted Vapor-depodetion”
11. Boyd, K. J., D. Marton, S. S. Todorov, et al., J. Vac. Sci. Technol., A 13 (1995) 2110, “Formation of C-N thin-films by ion-beam deposition”.
12. Brockman, Can. J. Chem., 33 (1955) 507.
13. Capano, M. A., N. T. McDevitt, R. K. Singh, F. Qian, J. Vac. Sci. Technol., A 14 (2) (1996) 431-435, “Characterization of amorphous carbon thin films”.
14. Catherine, Y., Diamond and Diamond-like Film and Coatings Edited by Clausing, R. E., et al., Plenum Press, New York, 1991.
15. Chang, H. C., J. C. Lin, J. Y. Wu, K. H. Chen, J. Phys. Chem., Vol. 99, 28 (1995) 11081-11088, “Infrared Spectroscopy and Vibrational Relaxation of CHx and and CDx Stretches on Synthetic Diamond Nanocrystal Surfaces”.
16. Chang, H. L., C. T. Kuo, Diamond and Related Materials, 10 (2001) 1910-1915, “Characteristics of Si-C-N films deposited by microwave plasma CVD and pulsed laser deposition”.
17. Chen, K. H., J. J. Wu, L. C. Chen, C. Y. Wen, P. D. Kichambare, F. G. Tarntair, P. F. Kuo, S. W. Chang, Y. F. Chen, Diamond and Related Materials 9 (2000) 1249-1256, “Comparative studies on field emission properties of carbon-based materials”.
18. Chen, L. C., D. M. Bhusari, C. Y. Yang, K. H. Chen, T. J. Chuang, M. C. Lin, C. K. Chen and Y. F. Huang, Thin Solid Films 303 (1997) 66-75, “Si-containing crystalline carbon nitride derived from microwave plasma-enhanced chemical vapor deposition”.
19. Chen, L. C., C. K. Chen, S. L. Wei, D. M. Bhusari, K. H. Chen, Y. F. Chen, Y. C. Jong and Y .S. Huang, Applied Physics Letters 72 (1998) 2463-2465, “Crystalline silicon carbon nitride: A wide band gap semiconductor”.
20. Chen, L.C., H. Y. Lin, C. S. Wong, K. H. Chen, S. T. Lin, Y. C. Yu, C. W. Wang, E. K. Lin and K. C. Ling, Diamond and Related Materials 8 (1999) 618-622, “Ellipsometric study of carbon nitride thin films and without silicon addition”.
21. Chen, L. C., C. Y. Yang, D. M. Bhusari, K. H. Chen, M. C. Lin, J. C. Lin and T. J. Chuang, Diamond and Related Materials 5 (1996) 514-518, “Formation of crystalline silicon carbon nitride films by microwave plasma-enhanced chemical vapor deposition”.
22. Cohen, M. L., Physical Review, B 32 (1985) 7988-7991, “Calculation of bulk moduli of diamond and zinc-blende solids”.
23. Cohen, M. L., Science, 261 (1993) 307-308, “Predicting useful materials”.
24. Cohen, M. L., Nature, 338 (1989) 291, ”Novel materials from theory”.
25. Cremades, A., J. Piqueras, M. Schreck, Diamond and Related Materials, 6 (1997) 95-98. “Electron beam-induced current imaging of chemical vapor-deposited diamond films”.
26. Cui, J. B., J. Ristein, L. Ley, Diamond and Related Materials, 9 (2000) 1036-1040, “Photoelectron emission characteristics of diamond near the band gap”.
27. Cui, J. B., J. Ristein, M. Stammler, K. janischowsky, G. Kleber, L. Ley, Diamond and Related Materials, 9 (2000) 1143-1147, “Hydrogen termination and electron emission from CVD diamond surface: a combined secondary electron emission, photoelectron emission microscopy, photoelectron yield, and field emission study”.
28. Cui, J. B.; J. Robertson, W. I. Milne, Diamond and Related Materials, 10 (2001) 868-872, “The effect of film resistance on electron field emission from amorphous carbon films”.
29. De Giorgi, M. L., G. Leggieri, A. Luches, M. Martino, A. Perrone, A. Zocco, G. Barucca, G. Majni, E. Gyorgy, L.N. Mihailescu and M. Popescu, Applied Surface science 127-129 (1998) 481-485, “Carbon nitride films deposited by reactive laser ablation”.
30. Ebbesen, T. W., “Carbon nanotubes-Preparation and properties”, CRC Press, Boca Raton, New, London, Tokyo, 1997.
31. Fakirov, S., H. Boudevska, N. Aneva, Makromol. Chem., 155 (1972) 259.
32. Franceschini, D. F., Jr. F. L. Freire, S. R. P. Silva, Appl. Phys. Lett., 68 (1996) 2645-2647, “Influence of precursor gases on the structure of plasma deposited amorphous hydrogenated carbon-nitrogen films”.
33. Frenklach, M. and K. E. Spear, J. Mater. Res., 3 (1), Jan/Feb (1988) 133-140, “Growth mechanism of vapor-deposited diamond”.
34. Frolov, V. D., A. V. Karabutov, S. M. Pimenov, E. D. Obraztsova, V. I. Konov, Ultramicroscopy, 79 (1999) 209-215, “Application of scanning tunneling-field emission microscopy for investigations of field electron emission from nanoscale diamond films”.
35. Gong, Z., E. G. Wang, G. C. Xu, Thin Solid Films, 348 (1999) 114-121, “Influence of deposition condition and hydrogen on amorphous-to-polycystalline SiCN films”.
36. Haller, E. E., M. L. Cohen and W. L. Hansen, U.S. Patent, 5, 110 (1992) 679.
37. Hannam, S., J. Appl. Crystallogr., 2 (1969) 45.
38. Harris, P. J. F., “Carbon Nanotubes and related Structures-new materials for twenty-first century”, Cambridge University Press, 1999.
39. Haubner, R. and B. Lux, Diamond and Related Materials, 2 (1993) 1277-1294, “Diamond growth by hot-filament chemical vapor deposition: state of the art”.
40. He, Z., G. Carter and S. John, Colligon, Thin Solid Films 283 (1996) 90-96, “Ion-assisted deposition of C-N and Si-C-N films”.
41. Hoffman, A., I. Gouzman, and R. Brener, Appl. Phys. Lett., 64 (1994) 845-847, “Possibility of carbon nitride formation by low-energy nitrogen implantation into graphite: In situ electron spectroscopy studies”.
42. Hsieh, C. H., Y. S. Huang, K. K. Tiong, C.W. Fan, Y. F. Chen, L. C. Chen, J. J. Wu and K. H. Chen, Journal of Applied Physics 87 (2000) 280-284, “Piezorflectance study of an Fe-containing silicon carbon nitride crystalline film”.
43. Huang, Q. A., M. C. Poon, J. K. O. Sin, Appl. Surf. Sci., 119 (3-4) (1997) 229-236, “Field emission from silicon including continuum energy and surface quantization”.
44. Iijima, S., Nature, 354 (1991) 56-58, “Helical microtubules of graphitic carbon”.
45. Johnson, D. J., Y. Chen, Y. He and R. H. Prince, Diamond and Related Materials, 6 (1997) 1799-1805, “Deposition of carbon nitride via hot filament assisted CVD and pulsed laser deposition”.
46. Journet, C. and P. Bernier, Appl. Phys., A, 67 (1998) 1.
47. Kawamula, H., Y. Kurokawa, T. Maki, T. Kobayashi, Applied surface Science, 117/118 (1997) 578-581, “Cathodoluminescence measurement of CVD diamond surface”.
48. Kawarada, M., Kurihara, Sasaki, K., Diamond and Related Materials, 2 (1993) 1083-1089, “Diamond synthesis on a metal substrate”.
49. Kimock, F. M., B. J. Knapp, Surface and Coatings Technology, 56 (1993) 273-279.
50. Kouvetakis, J., A. Bandari, M. Todd, et al., Chemical Materials, 6 (1994) 811.
51. Kroto, H. W., J. R. Heath, S .C. O’Brien, R. F. Curl and R. E. Smalley, Nature, 318 (1985) 162-165, “C60: Buckminsterfullerene”.
52. Kuo, C. T., H. M. Lien, C. R. Lin, Thin Solid Films, 290-291 (1996) 254-259, “Origins of the residual stress in CVD diamond films”.
53. Kuo, M. T., P. M. May, A. Gunn, et al., M. N. R. Ashfold, K. N. Rosser, Int. J. Mod. Phys. B: Condensed Matter phys., 14 (2000) 295-300.
54. Li, D., Y. W. Chung, S. Yang, M. S. Wong, F. Adibi, W. D. Sproul, J. Vac. Sci. Technol., A12 4 (1994) 1470-1473, “Infrared absorption and nuclear magnetic resonance studies of carbon nitride thin films prepared by reactive magnetron sputtering”.
55. Lin, D. Y., C. F. Li, Y. S. Huang, et al., Physical Review, B 56 (1997) 6498-6501, “Temperature dependence of the direct band gap of Si-containing carbon nitride crystalline films”.
56. Link, F., H. Baumann, K. Bethge, H. Klewe-Nebebenius, Nuclear Instruments and Methods in Physics Research, B 139 (1998) 268-272, “C band N depth profiles of SiCN layers determined with nuclear reaction analyses and AES”.
57. Liu, A. Y., and M. L. Cohen, Science 245 (1989) 841, “Surface- and microanalytical characterization of silicon-carbonitride thin films prepared by means of radio-frequency magnetron co-sputtering”.
58. Liu, A. Y., and M. L. Cohen, Phys. Rev., B 41 (1990) 10727.
59. Lu, G., Advanced Materials & Processes 12 (1993), “CVD diamond films protect against wear and heat”.
60. Lu, T. R. and T. M. Chen, Physica C, 276 (1997) 75-83, “Structural and superconducting properties of phases in the underdoped Y2(Ba1-xSrx)4Cu7O14+δ system: The evidence for a chemical pressure effect”.
61. Lutz, H., M. Bruns, F. Link, H. Baumann, Thin Solid Films, 332 (1998) 230-234, “Surface- and microanalytical characterization of silicon-carbonitride thin films prepared by means of radio-frequency magnetron co-sputtering”.
62. Lutz, H., M. Bruns, F. Link, H. Baumann, Surface and Coatings Technology, 116-119 (1999) 419-423, “Synthesis of silicon carbonitride thin films by means of r.f.-sputtering and ion implantation”.
63. Marton, D., K. J. Boyd, A. H. Al-Bayati, et al., Phys. Rev. Lett., 73 (1994) 118-121, “Carbon Nitride Deposited Using Energetic Species- A 2-Phase System”..
64. Machorro, R., E. C. Samano, G. Soto, L. Cota, Applied Surface Science, 127-129 (1998) 564-568, “SiCxNy thin films alloys prepared by pulsed excimer laser deposition:.
65. May, P. W., M. T. Kuo, M. N. R. Ashfold, Diamond and Related Materials, 8 (1999) 1490-1495, “Field emission conduction mechanisms in chemical-vapour-deposited diamond and diamond-like carbon films”.
66. Maya, L., D. R. Cole, and E. W. Hagamon, J. Amer. Ceramics Society, 74, 7 (1991) 1686.
67. Morrish, A. A., J. W. Glesener and M. Fehrenbacher, diamond and Related Materials, 3 (1993) 173-176, “Diamond tubes and fibers”.
68. Natl. Bur. Stand. (U. S.) Monogr., 25, 18 (1981) 59.
69. Niu, C., Y. Z. Lu, and C. M. Lieber, Science, 261 (1993) 334-336, “Experimental realization of the covalent solid carbon nitride”.
70. Norris, D., et al., Powder Diffraction, 5 (1990) 225.
71. Randall, L. and W. Vander, Chemical Physics letters, 324 (2000) 217-223, “Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes”.
72. Saha, S., M. Hossain, M. Quader, J. Bangladesh Acad. Sci., 10 (1986) 13.
73. Sanc, I., Polytechna, Foreign Trade Corp. Panska, Czechoslovakia, ICDD Grant-in-Aid (1990), (JCPDS 41-1487).
74. Seth, J., R. Padiyath, S. V. Babu, J. Vac. Sci. Technol., A 10 (2) (1992) 284-289, ”Influence of the deposition gas mixture on the structure and failure modes of diamondlike carbon films”.
75. Sheshin, E. P., Ultramicroscopy, 79 (1999) 101-108, “Field emission of carbon fibers”.
76. Sheshin, E. P., A. V. Anashchenko, S. G. Kuzmenko, Ultramicroscopy, 79 (1-4) (1999) 109-114, “Field emission characteristics research of some type of carbon fibres”.
77. Sjostrom, H., L. Hultman, J. E. Sundgren, et al., J. Vac. Sci. Technol., A 14, 1 (1996) 56-62, “Growth of CNxHy films by reactive magnetron sputtering of carbon in Ar/NH3 discharge”.
78. Sugimura, H., Y. Sato, N. Tajima, O. Takai, Surface and Coatings Technology, 142-144 (2001) 714-718, “Field emission properties of amorphous carbon nitride thin films prepared by arc ion plating”.
79. Sugino, T. and H. Hieda, Diamond and Related Materials, 9 (2000) 1233-1237, “Field emission characteristics of borob carbon nitride films synthesized by plasma-assisted chemical vapor deposition”.
80. Sung, C. M., Unpublished “Patent Disclosure” of Norton Company, (1984).
81. Sung, C. M., M. Sung, Materials Chemistry and Physics, 43 (1996) 1-18, “Carbon nitride and other speculative superhard materials”.
82. Tabbal, M., P. Merel, S. Moisa, et al., Appl. Phys. Lett., 69 (1996) 1698-1096, “XPS and FTIR analysis of nitrogen incorporation in CNx thin films”.
83. Tagusakawa, F., Ames Laboratory, Iowa State University, Ames, IA, U.S.A., unpublished results.
84. Tarntair, F. G.; J. J. Wu, K. H. Chen, C. Y. Wen, L. C. Chen, H. C. Cheng, Surface and Coatings Technology, 137 (2001) 152-157, “Field emission properties of two-layer structured SiCN films”.
85. Teter, D. M., and R. J. Hemley, Science 271 (1996) 53-55, “Low-Compressibility Carbon Nitride”.
86. Wang, C. Z., E. G. Wang, Q. Dai, J. Appl. Phys., 83 (1998) 1975-1978, “First principles calculations structural properties of β-Si3-nN4(n=0,1,2,3)”.
87 Wang, W., K. Liao, J. Gao, A. Liu, Thins Solid Films, 215 (1992) 174-178, “Internal stress analysis in diamond films formed by d.c. plasma chemical vapour deposition”.
88. Watanabe, A., M. Deguchi, M. Kitabatake, Diamond and Related Materials, 10 (2001) 818-823, “Microscopic study of field emission from diamond particles”.
89. Williams, B. E. and J. T. Glass, J. Mater. Res., 4(2), Mar/Apr (1989) 373-384, “Characterization of diamond thin film: Diamond phase identification, surface morphology, and defect structures”.
90. Wixom, M. R., J. Amer. Ceramics Society, 73, 3 (1990) 1973-1978, “Chemical preparation and shock-wave compression of carbon nitride precursors”.
91. Wu, J.J., K. H. Chen, C. Y. Chen, X. J. Guo, H. J. Lo, S. T. Lin, Y. C. Yu, C. W. Wang, E. K. Liu, Diamond and Related Materials 9 (2000) 556-561. “Effect of carbon sources on silicon carbon nitride films growth in an electron cyclotron resonance plasma chemical vapor deposition reactor”.
92. Wu, K. H., E. G. Wang, J. Qing, et al., J. Appl. Phys., 83 (1998) 1702-1704, “Electron cyclotron resonance assisted chemical vapor deposition of carbon nitride films on diamond”.
93. Yatsui, K., C. Grigoriu, K. Masugata, et al., Jpn. J. Appl. Phys., 36 (1997) 4928-4934.
94. 宋健民,”鑽石冷陰極的場發射:平面顯示器的大革命(上)”,工業材料141 期, 9月(1998)
95. 李淑芬,李淑芬,”以十二甲基環己矽烷低壓化學氣相沉積碳化矽”,交通大學應用化學研究所,碩士論文(1991)
96. 林啟瑞,交通大學材料科學與工程研究所,博士論文(2000)
97. 林兆焄, 工業技術研究院 工業材料研究所, 精密蝕刻實驗室
98. 陳世錦,” 微波電子迴旋共振電漿物理氣相沉積法於矽晶片上沉積Si-C-N薄膜及其特性分析”, 交通大學材料科學與工程研究所,碩士論文(2000)
99. 真空科技,第六卷 第二期, 第五至八頁(1993)
100. 彭于容,”含矽氮化碳薄膜之特性分析”,中央大學物理研究所,碩士論文(1997)
101. 劉子龍,”微波電漿化學氣相沉積法在矽基材上合成Si-C-N三元和二元薄膜及其性質分析”,交通大學材料科學與工程研究所,碩士論文(2000)
102. 楊博如,”以微波電漿化學氣相沉積法在矽晶上沉積三元矽氮化碳薄膜的結構與特性”,交通大學材料科學與工程研究所,碩士論文 (2000)
103. 蔡明和,”大面積定向性奈米碳管之成長機制及性質-觸媒輔助電子迴旋共振化學氣相沉積法”, 交通大學材料科學與工程研究所,碩士論文(2001)
104. 盧添榮,”新的寬能隙與超硬之氮化碳材料合成方法”, 交通大學材料科學與工程研究所,博士論文 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔