|
References Cox, D. R. & Oakes, D. (1984). Analysis of survival data. London, Chapman and Hall. Kuk, Anthony Y. C. & Chen, C, H. (1992). A mixture model combining logistic regression with proportional hazards regressions. Biometricka 79, 531-541 Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38, 1041-6. Farewell, V. T. (1986). Mixture models in survivor analysis. Can. J. Statist. 14,257-262. Fine, J. P., Jiang, H. and Chappell, R. (2001). On semi-competing risks data. Biometrika 88, 907-919. Heckman, J. J. & Honor , B. E. (1989). The identifiability of the competing risk model. Biometrika 76, 325-330 Lin, D. Y., Robins, J. M. & Wei, L. J. (1996). Comparing two failure time distributions in the presence of dependent censoring. Biometrika 83,381-393. Maller, R. A. and Zhou, S. (1992). Estimating the proportions in a censored sample. Biometrika 79, 731-739. Maller, R. A. and Zhou, S. (1996). Survival analysis with long-term survivors.Chich-ester, U.K.: John Wiley and Sons. Pepe, M. S. (1991). Multiple endpoint studies. J. Am. Statistic. Assoc. 86, 770-778. Prentice, R. L. & Kalbfleisch, J. D., Peterson, A. V., Flournoy, N., Farewell, V. T.,Breslow, N. E. (1978). The analysis of failure times in the presence of competing risks. Biometrics 34, 541-554. Slud, E. V. & Rubinstein, L. V. (1983). Dependent competing risks and summary survival curves. Biometrika 70, 643-649. Stephen W. Lagakos (1976). A stochastic model for censored-survival data in the presence of an auxiliary variable. Biometrics 32, 551-559. Weijing Wang (2002). Nonparametric Estimation of the Sojourn Time Distribution for a Multi-Path Model. (under review by JRSSB) Zheng, M. & Klein, J. P. (1995). Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika 82, 127-138.
|