跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/23 19:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建良
研究生(外文):Jian-Liang Lin
論文名稱:利用五元細分割的一致性網格參數化技術
論文名稱(外文):Consistent Mesh Parametrizations using Quinary Subdivision
指導教授:莊榮宏莊榮宏引用關係林正中林正中引用關係
指導教授(外文):Jung-Hong ChuangCheng-Chung Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:69
中文關鍵詞:參數化幾何重新取樣半正規網格變形動畫
外文關鍵詞:ParametrizationRemeshingsemi-regular meshesmorphing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
為多個物體建立對應關係的演算法在電腦圖學及幾何處理的領域裡非常的有用。然而,建立的過程中所需要大量人為設定的切割方式及很多特徵點對應。
因此,我們提出一個有系統的方法叫做``遞迴五元細分割''在不需要大量人為設定的情形之下進而求得一個共同的切割方式。
五元細分割是遞迴地將一個參數化之後會高度延展的曲塊細切成五個新的小曲塊。這個演算法可以延伸至多個物體,而且將使用者額外所指定的特徵對應點也列入考慮來得到一個共同的切割方式。
以這個切割方式為基礎,對原來物體的幾何資料做規則性或適應性重新取樣再產生``半正規網格''表示法的物體。
還有細部的幾何資訊也可以重新取樣再透過Normal map的表示法儲存下來。我們以二個或二個以上的網格物體在三度空間中或是小波空間中計算而產生變形動畫(Morphing)來當作本演算法的效果展示。

The correspondences establishment among multiple objects is
a versatile algorithm in computer graphics and geometry processing, which in general takes as input the specification of a common dissection together with a set of feature points.
We propose a systematic method called
recursive quinary subdivision
to find a dissection for an object with little
user interventions.
The quinary subdivision is a process that recursively dissects an
highly stretched
patch into five new patches.
The process can be extended to multiple objects, taking
into account the alignment of extra feature points
and derive a common dissection.
Based on the dissection,
uniform or adaptive remeshig can be performed to yield
a set of semi-regular meshes.
Moveover, geometric details can be resampled and stored as
normal maps.
We also demonstrate the mesh morphing application between two
or more objects in both spatial and wavelet domain based on
the correspondence established by the common dissection and
remeshing.

Contents
List of Figures vi
List of Tables x
1 Introduction 1
1.1 Motivation....................................1
1.2 ThesisOrganization...............................3
2 Related Work 4
2.1 Remeshing....................................4
2.2 Morphing ....................................8
3 Consistent Mesh Parametrization using Quinary Subdivision 15
3.1 BasicSetup...................................15
3.2 Floater ’spatchparametrization........................15
3.3 QuinarySubdivision ..............................18
3.4 Dissectiononasingleobject..........................22
3.5 ExtendingtoMultipleObjects.........................25
3.6 ExtraFeatureCorrespondences ........................27
4 Remeshing 34
4.1 UniformRemeshing...............................34
4.2 daptiveRemeshing ..............................35
4.3 NormalMapping ................................38
4.4 ExperimentalResults..............................40
5 Mesh Morphing 44
5.1 Morphinginspatialdomain ..........................44
5.2 Scheduledinterpolationinwaveletdomain..................45
5.3 Multi-targetmorphing .............................45
6 Conclusion and Future Research 52
6.1 Summary ....................................52
6.2 FutureResearch.................................52
Bibliography 55

[Ale01 ]M.Alexa.Mesh morphing.In EUROGRAPHICS’01 State of The Art Report
2001.
[BDHJ00 ]M.Bertram,M.A.Duchaineau,B.Hamann,and K.I.Joy.Bicubic
subdivision-surface wavelets for large-scale isosurface representation and visu-
alization.In Proceedings of IEEE Visualization’00 2000.
[CC78 ]E.Catmull and J.Clark.Recursively generated b-spline surfaces on arbitrary
topological meshes.Computer Aided Design 10(6):356 —360,1978.
[CLR90 ]T.H.Cormen,C.E.Leiserson,and R.L.Rivest.Introduction to Algorithms.污獨
The MIT Press,1990.
[CRS98 ]P.Cignoni,C.Rocchini,and R.Scopigno.Metro:Measuring error on simpli-
.ed surfaces.In Computer Graphics Forum 1998.
[EDD + 95 ]M.Eck,T.DeRose,T.Duchamp,H.Hoppe,M.Lounsbery,and W.Stuet-
zle.Multiresolution analysis of arbitrary meshes.In Proceedings of SIG-GRAPH’95
1995.
[Flo97 ]M.S.Floater.Parametrization and smooth approximation of surface trian-
gulation.In Computer Aided Geometric Design 1997.
[FM98 ]K.Fujimura and M.Makarov.Foldover-free image warping.Graphical models
and image processing 60(2):100 —111,March 1998.
[GSL + 98 ]A.Gregory,A.State,M.Lin,D.Manocha,and M.Livingston.Feature-based
surface decomposition for correspondence and morphing between polyhedra.
In Computer Animation’98 June 1998.
[GVSS00 ]I.Guskov,K.Vidim ˇce,W.Sweldens,and P.Schr ‥oder.Normal meshes.In
Proceedings of SIGGRAPH’00 2000.
[Hug92 ]J.F.Hughes.Scheduled fourier volume morphing.In Proceedings of SIG-GRAPH’92
1992.
[HWK94 ]T.He,S.Wang,and .Kaufman.Wavelet-based volume morphing.In
Proceedings of Visualization’94 1994.
[Kil00 ]M.J.Kilgard.practical and robust bump-mapping technique for today ’s
gpus.In Game Developer’s Conference 2000 Course ”Adavanced OpenGL
Game Development”,2000.
[KS01 ]T.Kanai and H.Suzuki.Approximate shortest path on polyhedral surface and
its applications.Computer-Aided Design 33(11):801 —811,September 2001.
[KSK98 ]T.Kanai,H.Suzuki,and F.Kimura.Three-dimensional geometric meta-
morphosis based on harmonic maps.The Visual Computer 14(4):166 —176,
1998.
[KSK00 ]T.Kanai,H.Suzuki,and F.Kimura.Metamorphosis of arbitrary triangular
meshes.IEEE Computer Graphics & Applications 20(2):62 —75,March/April
2000.
[KSS00 ]A.Khodakovsky,P.Schr ‥oder,and W.Sweldens.Progressive geomtry com-
pression.In Proceedings of SIGGRAPH’00 2000.
[LDSS99 ]A.W.F.Lee,D.Dobkin,W.Sweldens,and P.Schr ‥oder.Multiresolution mesh
morphing.In Proceedings of SIGGRAPH’99 1999.
[LDW97 ]M.Lounsbery,T.DeRose,and J.Warren.Multiresolution analysis for surfaces
of arbitrary topological type.ACM Transactions on Graphics 16(1):34 —73,
1997.
[Lou94 ]M.Lounsbery.Multiresolution Analysis for Surfaces of Arbitrary Topolog-ical
Type.污獨 PhD thesis,Department of Computer Science and Engineering,
University of Washington,1994.
[LSS + 98 ]A.W.F.Lee,W.Sweldens,P.Schr ‥oder,L.Cowsar,and D.Dobkin.M PS:
Multiresolution adaptive parameterization of surfaces.In Proceedings of SIG-GRAPH’98
1998.
[LV98 ]F.Lazarus and A.Verroust.Three-dimensional metamorphosis:a survey.The
Visual Computer 14(4):373 —389,1998.
[MKFC01 ]T.Michikawa,T.Kanai,M.Fujita,and H.Chiyokura.Multiresolution inter-
polation meshes.In Proceedings of Pacific Graphics’01 2001.
[PSS01 ]E.Praun,W.Sweldens,and P.Schr ‥oder.Consistent mesh parameterizations.
In Proceedings of SIGGRAPH’01 2001.
[SSGH01 ]P.V.Sander,J.Snyder,S.J.Gortler,and H.Hoppe.Texture mapping
progressive meshes.In Proceedings of SIGGRAPH’01 2001.
[ZSH00 ]M.Z ‥ockler,D.Stalling,and H.C.Hege.Fast and intuitive generation of
geometric shape transitions.The Visual Computer 16(5):241 —253,2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top