跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游人諭
研究生(外文):Jen-Yu Yu
論文名稱:具精細伸縮特性視訊之接收端導向可靠性多點傳輸
論文名稱(外文):MPEG-4 FGS Receiver-Driven Layered Reliable Multicast
指導教授:李素瑛李素瑛引用關係蔣迪豪
指導教授(外文):Suh-Yin LeeTi-Hao Chiang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:77
中文關鍵詞:多點傳輸可靠多媒體串流
外文關鍵詞:MPEG-4 FGSQoSReliablestreamingMulticastRecovery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,網路多點傳輸技術已被廣泛地應用在傳送多媒體資訊到整個多點廣播群組的成員,但是最大的缺點在於資料傳送缺乏可靠性,由於多點傳輸模式為一對多,伺服器也無法同時滿足個別用戶端的需求,即傳統的伺服器端位元速率調整方法無法滿足在多點廣播上傳輸的要求,因此有人提出了接收端位元速率調整方法,它結合了多層來源影像壓縮演算法(Layered source coding algorithm) 和接收端多層多點播送(Receiver-driven Layered Multicast)來達成位元率調整的問題。然而,實際上網路可用頻寬是隨著時間不斷的變化,因此,封包的遺失無法被避免而造成影像品質的破壞,相較於單一階層和多重階層的影像壓縮法,MPEG-4具精細伸縮壓縮法(MPEG-4 FGS)更適合應用在多媒體串流傳輸上,當影像資料在網路上遺失,解碼器可以根據收到的資料的多寡,提供部分影像品質的提昇,而不會破壞掉整張畫面。在傳輸方面,可靠性多點傳輸技術被應用在資料遺失的復元及狀況回報,例如RMTP(Reliable Multicast Transport Protocol)和SRM(Scalable Reliable Multicast)。在這篇論文裡,我們提出了一個全新的可靠性多點傳輸多媒體整合系統─“具精細伸縮特性視訊之接收端導向可靠性多點傳輸”(MPEG-4 FGS Receiver-driven Layered Reliable Multicast)--除了利用我們所提出的可靠性多點傳輸演算法,我們也擷取RMTP,RLM,及MPEG-4 FGS的優點來架構這個系統。它包含了幾個特點(1)支援多重頻道視訊傳輸及封包遺失回復的應用層通訊協定(2)多重頻道多點廣播之緩衝區管理(3)快速處理封包遺失回復及有效率之頻寬使用機制
Traditionally, IP multicast [1] video streaming is an efficient transmission method of sending data to a group, but the packets are sent unreliably and the single target rate cannot meet all receivers’ requirements. Because the source-based rate-adaptation methods perform poorly in multicast transmission, one approach for multicast rate adaptation is to combine the layered source coding algorithms, such as SNR scalability [3] and temporal scalability [43] [44], with a multicasting transmission system, namely, Receiver-driven Layered Multicast (RLM) [2]. However, the actual available bandwidth varies over time, so the packet losses cannot be avoided and may impact the video quality seriously. Comparing with single layered coding [48] and scalable layered video coding, the advantage of MPEG-4 FGS (Fine Granularity Scalability) [9] coding scheme for Internet video streaming is more resilient to IP packet-losses and provides partial quality enhancement proportional to the number of bits which is decoded for each frame. Besides, some reliable multicast schemes, such as RMTP (Reliable Multicast Transport Protocol) [28] [29] and SRM (Scalable Reliable Multicast) [19] [30], were proposed to perform the loss recovery and feedback for reliability. In this thesis, we propose a new integrated reliable multicast streaming system, namely, MPEG-4 FGS Receiver-driven Layered Reliable Multicast (RLRM) adopting our proposed reliable multicast algorithms and exploring the advantages of RMTP, RLM, and MPEG-4 FGS. The characteristics of RLRM include: (1) a new application-level protocol to support multi-channel video transmission and loss recovery, (2) a buffer management for multi-channel multicast, and (3) a new scalable loss recovery mechanism for achieving quickly loss recovery and efficient bandwidth utilization.

Chapter 1 Introduction
1.1 Motivation
1.2 Organization
Chapter 2 Background
2.1 Overview of Video Streaming
2.2 Internet Transport Protocol
2.3 Overview of Multicast
2.4 Overview of Reliable Multicast
2.5 Review of Layered Scalable Coding Techniques
2.6 Introduction to MPEG-4 Fine Granularity Scalability
2.7 The MPEG-4 FGS Video Streaming Framework
2.8 FGS Packet-loss Resilience Over Bandwidth-varying Networks
2.9 Improve visual quality of FGS
Chapter 3 Related Works
3.1 Receiver-driven Layered Multicast (RLM)
3.2 Reliable Multicast Transport Protocol (RMTP)
3.2.1 Scalable Reliable Multicast (SRM)
3.2.2 Reliable Multicast Protocol by Sequence (RMPS)
Chapter 4 Design Issues for FGS Receiver-Driven Layered Reliable Multicast
4.1. Packet Size issue
4.2 Application Layer Protocol design issue
4.3 Multi-channel (layer) Multicast Buffer design issue
4.4 Multicast Loss Detection and Recovery issue
Chapter 5 MPEG-4 FGS Receiver-Driven Layered Reliable Multicast Streaming System
5.1 Server Architecture
5.2 Receiver Architecture
Chapter 6 Experiments and Results
6.1 Simulation Environment
6.1.1 Network Topology
6.1.2 Video source
6.2 Experiment 1: MPEG-4 FGS RLRM in error-free channels
6.3 Experiment 2: MPEG-4 FGS RLRM under variable bandwidth
Chapter 7 Conclusion and Future Work
Bibliography

[1] N. F. Mir, “A survey of data multicast techniques, architectures, and algorithms,”
IEEE Communications Magazine , Vol. 39, No. 9, pp. 164 -170, Sept. 2001
[2] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven Layered Multicast,” In SIGCOMM symposium on Communication architectures and protocols, Palo Alto, California, Aug. 1996
[3] F. Ruljin, L.B. Sung, A. Gupta, “Scalable layered MPEG-2 video multicast
architecture,” Consumer Electronics, IEEE Transactions on, Vol. 47, No. 1, pp.55-62, Feb. 2001
[4] J. Park, Seok Joo Koh, Shin Gak Kang, Dae Young Kim, “Multicast delivery based on unicast and subnet multicast,” IEEE Communications Letters, Vol. 5, No. 4, pp. 181-183, April 2001
[5] K. Nakauchi, H. Morikawa, T. Aoyama, “A network-supported approach to layered multicast,” Communications, 2001. ICC 2001. IEEE International Conference on, Vol. 4, pp. 1227-1231, 2001
[6] H.P. Sze, S.C. Liew, Y.B. Lee, “A packet-loss-recovery scheme for continuous-media streaming over the Internet,” IEEE Communications Letters , Vol. 5, No. 3, pp. 116-118, March 2001
[7] Weiping Li, Fan Ling, Xuemin Chen, “Fine granularity scalability in MPEG-4 for streaming video,” Circuits and Systems, 2000 Proceedings ISCAS 2000 Geneva The 2000 IEEE International Symposium on, Vol. 1, pp. 299 -302, 2000
[8] Dapeng Wu, Yiwei Thomas Hou, Wenwu Zhu, Hung-Ju Lee, Tihao Chiang, Ya-Qin Zhang, H. Jonathan Chao, “On End-to-End Architecture for Transporting MPEG-4 Video Over the Internet,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 10, No. 6, pp. 923-941, September 2000.
[9] Weiping Li, “Overview of fine granularity scalability in MPEG-4 video standard,” Circuits and Systems for Video Technology, IEEE Transactions on, Vol. 11, No. 3, pp. 301-317, March 2001
[10] M. Van Der Schaar, H. Radha, “Packet-loss resilient Internet video using MPEG-4 fine granular scalability,” Image Processing, 2000. Proceedings. 2000 International Conference on, vol. 3, pp. 372 -375, 2000
[11] M. Van Der Schaar, H. Radha, C. Dufour, “Scalable MPEG-4 video coding with graceful packet-loss resilience over bandwidth-varying networks,” Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International Conference on, Vol. 3, pp. 1487-1490, 2000
[12] R. Cohen, H. Radha, “Streaming fine-grained scalable video over packet-based networks,” Global Telecommunications Conference, 2000. GLOBECOM '00. IEEE, Vol. 1, pp. 288 -292, 2000
[13] Dapeng Wu, Yiwei Thoms Hou, Ya-Qin Zhang, “Transporting Real-Time Video over the Internet: Challenges and Approaches,” Proceedings of the IEEE, Vol. 88, No. 12, pp. 1855-1877, December 2000.
[14] H. M. Radha, M. Van Der Schaar, Yingwei Chen, “The MPEG-4 fine-grained scalable video coding method for multimedia streaming over IP,” Multimedia, IEEE Transactions on , Vol. 3, No. 1, pp. 53 -68, March 2001
[15] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications,” The Internet Engineering Task Force, RFC 1889, January 1996.
[16] Martin Mauve, Volker Hilt, Christoph Kuhmunch, Wolfgang Effelsberg, “RTP/I — Toward a Common Application Level Protocol for Distributed Interactive Media,” IEEE Transactions on Multimedia, Vol. 3, No. 1, pp. 152-161, March 2001.
[17] Schulzrinne H.,Rao A., Lanphier R. RFC 2326, Real Time Streaming Protocol (RTSP).
[18] R.Braden, D.Clark, and S.Berson, S.Herzog, and S.Jamin. “Resource Reservation Protocol (RSVP) Version 1 Functional Specification,” RFC2205,Spetember 1997.
[19] Floyd, S., Jacobson, V., Liu, C., McCanne, S., and Zhang, L., “A Reliable Multicast Framework for Light-weight Sessions and Application Level Framing,” IEEE/ACM Transactions on Networking, Vol. 5, No. 6, pp. 784-803, December 1997
[20] Baochun Bai; Harms, J.; Yuxi Li, “Active error recovery for reliable multicast,” Computer Communications and Networks, 2001. Proceedings. Tenth International Conference on, pp. 254 -260, 2001
[21] T. Lestayo, M. Fernandez, C. Lopez, ”Adaptive approach for FEC reliable multicast,” Electronics Letters , Vol. 37, No. 22, pp. 1333 -1335, 25 Oct. 2001
[22] J. Yoon, A. Bestavros, I. Matta, “Adaptive reliable multicast,” Communications, 2000. ICC 2000. 2000 IEEE International Conference on, Vol. 3, pp. 1542 -1546, 2000
[23] P. A. Chou, A. E. Mohr, A. Wang, S. Mehrotra, “Error control for receiver-driven layered multicast of audio and video,” Multimedia, IEEE Transactions on, Vol. 3, No. 1, pp. 108 -122, March 2001
[24] Shuju Wu, S. Banerjee, “Multicast feedback control using loss-pattern matching,” Communications, 2002. ICC 2002. IEEE International Conference on, Vol. 2, pp. 1253 -1258, 2002
[25] Tae-Ho Yu, Kyung-Sup Kwak, “Reliable multicast protocol by sequence (RMPS),“ Vehicular Technology Conference, 2001. VTC 2001 Spring. IEEE VTS 53rd, Vol.3, pp. 2157 -2161, 2001
[26] T. Noguchi, M. Yamamoto, H. Ikeda, “Reliable multicast protocol applied local FEC,” Communications, 2001. ICC 2001. IEEE International Conference on, Vol. 8, pp. 2348-2353, 2001
[27] J. Nonnenmacher and E. W. Biersack, “Reliable Multicast: Where to Use Forward Error Correction,” Proceedings 5th Workshop on Protocols for High Speed Networks, pp. 134-148, October 1996.
[28] S. Paul, K. Sabnani, J. Lin, and S. Bhattacharyya, “Reliable multicast
transport protocol (RMTP),” IEEE J. Select. Areas Commun, Vol. 15, pp. 407—421, Apr. 1997.
[29] J. C. Lin and S. Paul, “RMTP: A reliable multicast transport protocol,” in IEEE INFOCOM’96, pp. 1414-1424, 1997.
[30] S. K. Kasera, J. Kurose, and D. Towsley, “Scalable reliable multicast
using multiple multicast groups,” CMPSCI Tech. Rep. TR 96-73, Oct. 1996; Also Proc. 1997 ACM Sigmetrics Conf., June 1997.
[31] A. M. Costello, S. McCanne, “Search party: using randomcast for reliable multicast with local recovery,” INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE , Vol. 3, pp. 1256 -1264, 1999
[32] Wai-Tian Tan, A. Zakhor, “Video multicast using layered FEC and scalable compression,” Circuits and Systems for Video Technology, IEEE Transactions on, Vol. 11, No. 3, pp. 373 -386, March 2001
[33] Kang-Won Lee, Rohit Puri, Tae-eun Kim, Kannan Ramchandran, Vaduvur Bharghavan, “An Internet Source Coding and Congestion Control Framework for Video Streaming in the Internet,” IEEE INFOCOM 2000, Vol. 2, pp. 747-756, 2000.
[34] Feng Wu; Shipeng Li; Ya-Qin Zhang, “ A framework for efficient progressive fine granularity scalable video coding,” Circuits and Systems for Video Technology, IEEE Transactions on , Vol. 11, No. 3, pp. 332 -344, March 2001
[35] R. Kalluri, M. van der Schaar, “Fine granular scalability for H.26L-based video streaming,” Consumer Electronics, 2002. ICCE. 2002 Digest of Technical Papers. International Conference on, pp. 346-347, 2002
[36] T. M. Liu, Qi W., H. J. Zhang, F. H. Qi, “Systematic rate controller for MPEG-4 FGS video streaming,” Image Processing, 2001. Proceedings. 2001 International Conference on, Vol. 2, pp. 985 -988, 2001
[37] M. van der Schaar, Y. -T. Lin, ”Content-based selective enhancement for streaming video,” Image Processing, 2001. Proceedings. 2001 International Conference on, Vol. 2 pp. 977-980, 2001
[38] Yi-Shin Tung; Ja-Ling Wu; Po-Kang Hsiao; Kai-Li Huang, “An efficient streaming and decoding architecture for stored FGS video,” Consumer Electronics, 2001. ICCE. International Conference on, pp. 138 -139, 2001
[39] Lifeng Zhao; JongWon Kim; Kuo, C.-C.J., “ Constant quality rate control for streaming MPEG-4 FGS video,” Circuits and Systems, 2002 IEEE International Symposium on, Vol. 4, pp. 544 -547, 2002
[40] Thierry Turletti, Christian Huitema, “Videoconferencing on the Internet,” IEEE/ACM Transactions on Networking, Vol. 4, No. 3, pp. 340-351, June 1996.
[41] Li, Z.G.; Lin Xiao; Zhu, C.; Pan Feng, ”A novel rate control scheme for video over the internet,” Acoustics, Speech, and Signal Processing, 2002 IEEE International Conference on, Vol. 2, pp. 2065 -2068, 2002
[42] M. Yajnik, J. Kurose and D. Towsley, “Packet Loss Correlation in the MBone Multicast Network,” Global Internet Conference, November 1996
[43] Puri, A.; Yan, L.; Haskell, B.G. “Temporal resolution scalable video coding,” Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference, Vol. 2, pp. 947 -951, 1994
[44] Huifang Sun; Kwok, W., “MPEG video coding with temporal scalability,” Communications, 1995. ICC '95 Seattle, 'Gateway to Globalization', 1995 IEEE International Conference on, Vol. 3, pp. 1742 -1746, 1995
[45] A. Eleftheriadis and D. Anastassiou, “Meeting arbitrary QoS constraints using dynamic rate shaping of coded digital video,” in Proc. IEEE Int.Workshop Network and Operating System Support for Digital Audio and Video (NOSSDAV’95), pp. 95—106, Apr. 1995
[46] B. J. Dempsey, J. Liebeherr, and A. C. Weaver, “On retransmission-based error control for continuous media traffic in packet-switching networks,” Computer Networks and ISDN Syst., Vol. 28, No. 5, pp. 719—736, Mar. 1996.
[47] R. Talluri, “Error-resilient video coding in the ISO MPEG-4 standard,” IEEE Commun. Mag., Vol. 36, Issue 6, pp. 112—119, June 1998.
[48] Y. Wang and Q.-F. Zhu, “Error control and concealment for video communication: A review,” Proc. IEEE, Vol. 86, Issue 5, pp. 974—997, May 1998.
[49] R. Schafer, “MPEG-4: a multimedia compression standard for interactive applications and services,” IEEE Electronics & Communication Engineering Journal, Vol. 10, No. 6, pp. 253-262, December 1998.
[50] W. Li, F. Ling, and X. Chen, “Comparison of FGS with simulcast,” ISO/IEC JTC1/SC29/WG11, MPEG99/M5083, Sept. 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top