跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡明瑾
研究生(外文):Ming-Jin Tsai
論文名稱:家用機器人視覺系統之相機校正
論文名稱(外文):Camera Calibration of Home Robot Vision System
指導教授:莊仁輝
指導教授(外文):Jen-Hui Chuang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:65
中文關鍵詞:相機校正電腦視覺自我校正三維重建機器人
外文關鍵詞:Camera CalibrationComputer VisionSelf-Calibration3D ReconstructionRobot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1051
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
相機校正是在電腦視覺中重建三維模型的一個很重要的步驟。我們必須要有正確的相機資訊,才能夠精確地重建出三維模型。相機校正一直是這一個領域很重要的研究主題,其方法大致可以分為照相測量術和自我校正兩類。在本篇論文中,將探討適用於家用機器人的相機校正方法。主要採用的方法是藉由在不同角度觀察一個平面的圖形,來推算相機的各個內部參數。在實驗中,虛擬影像和真實影像皆被使用,都能得到很好的結果,而且這個方法忍受雜訊的能力相當高。但因所需時間稍嫌緩慢,故考慮另一種利用Homography的方法快速地計算相機的焦距,並由結果的對應來獲得更精確的相機內部參數。

Camera calibration is a crucial step in the reconstruction of a 3D model and has been an important research topic in computer vision. We can classify calibration techniques roughly into two categories: photogrammetric calibration and self-calibration. In this paper, we will study different algorithms to calibrate a camera. The major method is based on images of a planar pattern obtained from different viewing angles, as proposed in [30]. Both synthetic data and real images have been tested and results with satisfactory accuracy have been obtained. The method deals with noise well but is time consuming. To improve the efficiency of the calibration, a second method which uses homography to quickly compute the focal length is adopted. Proper mapping between the results obtained by these two methods can then be used to derive the correct camera parameters.

摘 要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 簡介 1
1.1 以三維物體為基礎的校正 2
1.2 自我校正 2
第二章 基本投影幾何 5
2.1 齊次座標表示法 5
2.2 三維幾何 6
2.2.1 相似轉換 7
2.2.2 歐幾里德轉換 8
2.2.3 總結 8
2.3 Homography 11
2.3.1 Homography的算法 11
2.4 極線幾何 13
2.5 基本矩陣與極線限制 15
2.5.1 基本矩陣的算法 17
第三章 相機模型與相機校正 21
3.1 照相機模型 21
3.2 從投影幾何到歐氏空間的相機校正 26
3.3 觀察平面圖形做相機校正 29
3.3.1 相機模型 29
3.3.2 求算Homography 30
3.3.3 內部參數的限制 31
3.3.4 相機校正 32
3.3.5 處理因透鏡的扭曲變形 34
3.3.6 微調每一個參數 36
3.3.7 總結 36
3.4 利用Homography求相機焦距 37
第四章 實驗結果 41
4.1 從投影幾何到歐氏空間的相機校正 41
4.1.1 虛擬的非平面三度空間點 41
4.1.2 虛擬的平面三度空間點 43
4.1.3 真實的非平面影像 44
4.2 觀察平面圖形做相機校正 46
4.2.1 多張影像與準確性之比較 47
4.2.2 雜訊程度和準確性之比較 49
4.2.3 穩定性測試 51
4.2.4 相機變焦的校正 54
4.3 利用Homography算焦距 55
4.3.1 虛擬影像點的實驗 56
4.3.2 真實影像的實驗 57
第五章 結論 62
參考文獻 63

[1] D. C. Brown, ″Close-Range Camera Calibration,″ Photogrammetric Eng., vol. 37, no. 8, pp. 855-866, 1971.
[2] W. Faig, ″Calibration of Close-Range Photogrammetry Systems: Mathematical Formulation,″ Photogrammetric Eng. And Remote Sensing, vol.41, no. 12, pp. 1479-1486, 1075.
[3] S. Ganapathy, ″Decomposition of Transformation Matrices for Robot Vision,″ Pattern Recognition Letters, vol. 2, pp. 401-412, Dec. 1984.
[4] J. Weng, P. Cohen, and M. Herniou, ″Camera Calibration with Distortion Models and Accuracy Evaluation,″ IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 10, pp. 965-980, Oct. 1992.
[5] O. Faugeras, T. Luong, and S. J. Maybank, ″Camera Self-Calibration: Theory and Experiments,″ Proc. Second European Conf. Computer Vision, pp. 321-334, May 1992.
[6] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, 1993.
[7] S. J. Maybank and O. Faugeras, ″A Theory of Self-Calibration of a Moving Camera,″ Int’l J. Computer Vision, vol. 8. no. 2, pp. 123-152, Aug. 1992.
[8] Q.-T. Loung, ″Matrice Fondamentale et Calibration Vissuelle sur l’Environnement-Vers une plus Grande Autonomie des Systèmes Robotiques, ″ PhD thesis, Université de Paris-Sud, Centre d’Orsay, Dec. 1992.
[9] R. I. Hartley, ″An Algorithm for Self-Calibration from Several Views,″ Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 908-912, June 1994.
[10] Q.-T. Luong and O. Faugeras, ″Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices,″ Int’l J. Computer Vision, vol. 22, no. 3, pp. 261-289, 1997.
[11] A. Heyden and K. Astrom, ″Euclidean Reconstruction from Constant Intrinsic Parameters,″ Proc. Int’l Conf. Pattern Recognition, 1996.
[12] M. Pollefeys, R. Koch and L. Van Gool, ″Self-Calibration and Metric Reconstruction in Spite of Varying and Unknown Internal Camera Parameters,″ Proc. Int’l Conf. Computer Vision, pp. 90-95, 1998.
[13] B. Triggs, ″Autocalibration and the Absolute Quadric,″ Proc. Computer Vision and Pattern Recognition, pp. 609-614, 1997.
[14] M. Pollefeys and L. Van Gool and A. Oosterlinck, ″The Modulus Constraint: A New Constraint for Self-Calibration,″ Proc. Int’l Conf. Pattern Recognition, pp. 349-353, 1996.
[15] M. Pollefeys and L. Van Gool, ″Self-Calibration from the Absolute Conic on the Plane at Infinity,″ Proc. CAIP, 1997.
[16] A. Heyden and K. Astrom, ″Euclidean Reconstruction from Image Sequences with Varying and Unknown Focal Length and Principle Point,″ Proc. Computer Vision and Pattern Recognition, 1997.
[17] S. Bougnoux, ″From Projective to Euclidean Space under any Practical Situation, a Criticism of Self-Calibration,″ Proc. Int’l Conf. Computer Vision, pp. 790-796, 1998.
[18] B. Caprile and V. Torre, ″Using Vanishing Points for Camera Calibration,″ Int’l J. Computer Vision, vol. 4, no. 2, pp. 127-140, Mar. 1990.
[19] R. Hartley, ″Self-Calibration from Multiple Views with a Rotating Camera,″ Proc. Third European Conf. Computer Vision, pp. 471-478, May 1994.
[20] 馬頌德、張正友,電腦視覺,科學出版社,1998.
[21] R. Hartley and , A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press.
[22] O. Faugeras and Q.-T. Luong, The Geometry of Multiple Images, The MIT Press.
[23] O. Faugeras, ″Stratification of Three-Dimensional Vision:Projective, Affine, and Metric Representations, ″ Journal of the Optical Society of America, vol.12, no.3, pp. 465-484, 1995.
[24] M. Pollefeys, Self-Calibration and Metric 3D Reconstruction from Uncalibrated Image Sequences, Ph.D., 1999.
[25] H. C. Longuet-Higgins, ″A Computer Algorithm for Reconstructing a Scene from Two Projections, ″ Nature, 293, pp. 133-135, 1981.
[26] G. Golub and C. Van Loan, Matrix Computations, The John Hopkins University Press, Baltimore, Maryland, 3 edition, 1996.
[27] O. Faugeras and Q.-T. Luong, ″The Fundamental Matrix:Theory, Algorithms, and Stability Analysis, ″ Int’l J. Computer Vision, 17, pp. 43-75, 1996.
[28] R. Hartley, ″In Defense of the Eight-Point Algorithm,″ IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 6, pp. 580-593, June 1997.
[29] R. G. Wilson, ″Modeling and Calibration of Automated Zoom Lenses,″ CMU Robotics Institute Technique Report, 1994.
[30] Z. Zhang, ″A Flexible New Technique for Camera Calibration,″ IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330-1334, Nov. 2000.
[31] J. More, The Levenberg-Marquardt Algorithm, Implementation and Theory. In G. A. Watson, editor, Numerical Analysis, Lecture Notes in Mathematics 630. Springer-Verlag, 1977.
[32] H. Kim and K. S. Hong, ″Practical self-calibration of pan-tilt cameras,″ IEE Proc. Vision, Image and Signal Processing, vol. 148, issue 5, pp. 349-335, Oct. 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top