跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 19:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張皓崴
研究生(外文):Hao-Wei Chang
論文名稱:以影片內容為基底的視訊影片檢索之研究
論文名稱(外文):A Study on Content-Based Video Retrieval
指導教授:陳玲慧陳玲慧引用關係
指導教授(外文):Ling-Hwei Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:35
中文關鍵詞:以影片內容為基底的影片檢索具有代表性的影像主要的色彩矩量主要的顏色
外文關鍵詞:content-based video retrievalkey-frameprimitives of color momentsdominant colors
相關次數:
  • 被引用被引用:1
  • 點閱點閱:455
  • 評分評分:
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們將會提出一個以影片內容為基底的影片檢索的方法,且這個方法不需對每段影片去找出具有代表性的影像。和那些方法不同的地方在於,我們的方法能將整段影片的資訊都使用到。我們所提出的方法是利用”主要的色彩矩量”和“主要的顏色”這兩個觀念去對每段影片擷取特徵。要從一段影片中取出”主要的色彩矩量”,首先將這段影片中的每一張影像分割成許多塊,然後對每一塊計算它的色彩矩量,再以這些矩量的值為基準將所有的塊分成很多群,每一群的中心向量就是這段影片的一個主要色彩矩量。要從一段影片中取出它的主要顏色,就是將這段影片中的每一點依據它們顏色的值去做分群,每一群裡面所有顏色的平均值就視為這段影片中的一個主要顏色。在對每段影片擷取出它們的特徵向量後,我們將會對主要的色彩矩量和主要的顏色分別提出一個計算兩段不同影片之間相似度的方法。然而,因為沒有一種方法是適合所有種類的影片,我們將會提出一個演算法,它能夠依據使用者所給的回應,自動的找出一個最適合的方法。
In this paper, a content-based video retrieval method without using key-frame will be proposed. Unlike the key-frame based approach, the proposed method uses the whole information of a shot instead of selecting several key-frames to represent a shot. This method is based on the concept of the primitives of color moments and the dominant colors to extract features. To extract the primitives of color moments, first each frame in a shot is divided into several blocks. Then, the color moments of all blocks are extracted and clustered into several classes. The mean moments of each class are considered as a primitive of the shot. To extract the dominant colors, all pixel’s color in a shot are clustered into several classes, and the center of the colors in each class is treat as a dominant color. After extracting the feature vectors for each shot, we will propose two measures to compute the similarity between two different shots using primitives of color moments and dominant colors as features, respectively. Furthermore, since there is no feature that is proper for all kinds of shots, a relevance feedback algorithm is also provided to automatically determine the best method according to the user’s response.
CHAPTER 1 INTRODUCTION.......................................1
1.1 Motivation.............................................1
1.2 Introduction of shot change detection..................2
1.3 Review of key-frame extraction methods.................4
1.4 Review of the features for content-based video/image
retrieval..............................................7
1.5 The proposed method....................................8
CHAPER 2 THE PROPOSED METHOD................................10
2.1 Features extraction of video shots....................12
2.1.1 Primitives of color moment extraction...............12
2.1.2 Dominant color extraction...........................16
2.2 Video retrieval.......................................18
2.2.1 Similarity measure for primitives of color moments..18
2.2.2 Similarity measure for dominant colors..............20
2.2.3 Combination of primitives and dominant colors.......20
2.3 Relevance Feedback Algorithm..........................21
CHAPER 3 EXPERIMENTAL RESULTS...............................23
CHAPER 4 CONCLUSIONS........................................31
REFERENCE...................................................33
[1] W. Xiong, J. C. M. Lee, and R. H. Ma, “Automatic Video Data Structuring Through Shot Partitioning and Key Frame Selection,” Machine Vision Application, Vol. 10, No. 2, 1997, pp. 51-65.
[2] W. Xiong, and J. C. M. Lee, ”Efficient Scene Change Detection and Camera Motion Annotation for Video Classification,” Computer Vision and Image Undersatanding, Vol. 71, No. 2, 1998, pp. 166-181.
[3] A. Nagasaka and Y. Tanaka, “Automatic Video Indexing and Full-Video Search for Object Appearances,” Visual Database System II, Elsevier Science Publishers, 1992, pp.113-127
[4] K. Otsuji, Y. Tonomura, and Y. Ohba, “Video Browsing Using Brightness Data,” Visual Communications and Image Processing 1991, Bellingham WA: SPIE, vol. 1606, 1991, pp. 980-985.
[5] Y. Tonomura, A. Akutsu, Y. Taniguchi, and G. Suzuki, “Structured Video Computing,” IEEE Multimedia, I(3), Fall 1994, pp. 34-43.
[6] H. Zhang, A. Kankamhalli, and S. Smoliar, “Automatic Partitioning of Full-Motion Video,” ACM Multimedia System, New York: ACM Press, vol. 1, 1993, pp. 10-28.
[7] W. Wolf, "Key Frame Selection By Motion Analysis," Proceedings, ICASSP’96, Vol. 2, 1996. pp. 1228-1231,
[8] H. J. Zhang, J. H. Wu, D. Zhong and S. W. Smoliar, “An Integrated System For Content-Based Video Retrieval And Browsing,” Pattern Recognition, 30(4): 1997, pp. 643-658.
[9] X. Sum, M. S. Kankanhalli, Y. Zhu and J. Wu, “Content-Based Representative Frame Extraction for Digital Video,” Multimedia Computing and System, 1998. Proceedings. IEEE International Conference on, 1998, pp. 190-193.
[10] H. S. Chang, S. Sull and S. U. Lee, “Efficient Video Indexing Scheme for Content-Based Retrieval,” Circuits and Systems for Video Technology, IEEE Transactions on, Vol. 9 Issue: 8, Dec. 1999, pp. 1269-1279.
[11] L. Zhao, W. Qi, S. Z. Li, S. Yang and H. J. Zhang, “Key-frame Extraction and Shot Retrieval Using Nearest Feature Line (NFL),” International Workshop on Multimedia Information Retrieval, in conjunction with ACM Multimedia 2000, Los Angeles, USA, 2000.
[12] M. Sricker and M. Orengo, “Similarity of Color Images,” Proc. SPIE Storage and Retrieval for Still Image and Video Databases III, San Jose, CA, USA, February 1995, pp. 381-392.
[13] Y. Deng, B.S. Manjunath, C. Kenney, M.S. Moore and H. Shin, “An Efficient Color Representation for Image Retrieval,” IEEE Tran. Image Processing, 10, (1), Jan. 2001, pp. 140-147.
[14] J. L. Shih and L. H. Chen, “Color Image Retrieval Based On Primary Color Moments”, revised by IEE Proceedings Vision, Image and Signal Processing.
[15] N. Akrout, R. Prost and R. Goutte, “Image Compression by Vector Quantization: A Review Focused on Codebook Generation,” Image and Vision Computing, 1994, 12, (10), pp. 627-637.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top