|
1. T. Back. Evolutionary Algorithms in Theory and Practice. Oxford Univ. Press, 19961. 2. T. Back. On the behavior of evolutionary algorithms in dynamic environments. In The 1998 IEEE International Conference on Evolutionary Computation Proceedings, pages 446--451, 1998. 3. T. Back, U. Hammel, and H. Schwefel. Evolutionary computation: comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3--17, 1997. 4. T. Back and H. Schwefel. Evolutionary computation: an overview. In Proceedings of IEEE Conference on Evolutionary Computation, pages 20--29, 1996. 5. F. Bolata and A. Nowe. From fuzzy linguistic specifications to fuzzy controllers using evolution strategies. In Proc. 4th Int. Conf. on Fuzzy Systyems, pages 1089--1094, 1995. 6. J. J. Buckley and Y. Hayashi. Fuzzy neural networks: A survey. Fuzzy Sets and Systems, 66:1--13, 1994. 7. R. Calabretta, S. Nolfi, D. Parisi, and R. Galbiati. Diploid robots adapting to fast changing environments. In Proceedings of the 8th International Conference on Artificial Neural Networks, pages 1145--1150, 1998. 8. B. Carse, T. C. Fogarty, and A. Munro. Evolving fuzzy rule base controllers using genetic algorithms. Fuzzy Sets and Systems, 80:273--293, 1996. 9. C. Cercone and G. McCalla. Ten years of computational intelligence. Computational Intelligence, 10(4):i--vi, 1994. 10. U. K. Chakraborty and H. Muhlenbein. Linkage equilibrium and genetic algorithms. In IEEE International Conference on Evolutionary Computation, pages 25--29, 1997. 11. F. Cheong and R. Lai. Constraining the optimization of a fuzzy logic controller,. IEEE Transactions on Systems, Man, and Cybernetics, 30(1):31--46, 2000. 12. H. G. Cobb and J. J. Grefenstette. Genetic algorithms for tracking changing environments. In Proceedings of the Fifth International Conference on Genetic Algorithms, pages 523--530, 1993. 13. E. Collingwood, D. Corne, and P. Ross. Useful diversity via multiploidy. In Proceedings of IEEE International Conference on Evolutionary Computation, pages 810--813, 1996. 14. O. Cordon and F. Herrera. A general study on genetic fuzzy systems. In J. Periaux, G. Winter, Galan M, and P. Cuesta, editors, Genetic Algorithms in Engineering and Computer Science, pages 33--57. Wiley, 1995. 15. O. Cordon and F. Herrera. A two-stage evolutionary process for designing tsk fuzzy rule-based systems. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 29(6), 1999. 16. O. Cordon, F. Herrera, and M. Lozano. A classified review on the combination fuzzy logic-genetic algorithms bibliography: 1989-1995. In E. Sanchez, T. Shibata, and L. Zadeh, editors, Genetic Algorithms and Fuzzy Logic Systems. Soft Computing Perspectives, pages 209--241. World Scientific, 1997. 17. K. A. DeJong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, Ann Arbor, 1975. 18. I. Dumitrache and C. Buiu. Genetic learning of fuzzy controllers. Mathematics and Computer in Simulation, 49:13--26, 1999. 19. D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, 1995. 20. D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, 2000. 21. L. J. Fogel. Toward inductive inference automata. In Proceedings of the International Federation for Information Processing Congress, pages 395--400, 1962. 22. J. A. Freeman. Neural Networks. Addison Wesley, 1991. 23. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, 1989. 24. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, 1989. 25. D. E. Goldberg and R. E. Smith. Nonstationary function optimization using genetic dominance. In In Proceedings of the Second International Conference on Neural Networks, pages 59--68, 1987. 26. A. F. Gomez-Skarmeta and F. Jimenez. Fuzzy modeling with hybrid systems. Fuzzy Sets and Systems, 104:199--208, 1999. 27. A. Gonzalez and R. Perez. Structural learning of fuzzy rules from noised examples. In Proceedings of 1995 IEEE International Conference on Fuzzy Systems, pages 1323--1330, 1995. 28. B. Greene. Crossover and diploid dominance with deceptive fitness. In Proceedings of the 1999 Congress on Evolutionary Computation, pages 1369--1376, 1999. 29. F. Greene. A method for utilizing diploid/dominance in genetic search. In Proceedings of the 1999 Congress on Evolutionary Computation, pages 439--444, 1994. 30. M. M. Gupta and D.H. Rao. On the principles of fuzzy neural net-works. Fuzzy Sets and Systems, 61:1--18, 1994. 31. BS. Hadad and CF. Eick. Supporting polyploidy in genetic algorithms using dominance vectors. In Evolutionary Programming VI. 6th International Conference, pages 223--234, 1997. 32. Y. Hayashi, J. J. Buckley, and E. Czogala. Fuzzy neural network with fuzzy signals and weights. In Proc. Int. Joint Conf. Neural Networks, 1992. 33. F. Herrera, M. Lozano, and J. L. Verdegay. Tuning fuzzy logic controllers by genetic algorithms. International Journal of Approx. Reasoning, 12:299--315, 1995. 34. F. Herrera, M. Lozano, and J. L. Verdegay. A learning process for fuzzy control rules using genetic algorithms. Fuzzy Sets and Systems, 100:143--158, 1998. 35. J. H. Holland. Adaptive plans optimal for payoff-only environments. In Proceedings of the Second Hawaii International Conference on System Sciences, pages 917--920, 1969. 36. J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, 1975. 37. J. H. Holland. Genetic algorithms and classifier systems: foundations and future directions. In Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pages 82--89, 1987. 38. J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms,. In Pattern-directed Inference Systems,. Academic Press, 1978. 39. R. B. Hollstien. Artificial Genetic Adaptation in Computer Control Systems. PhD thesis, University of Michigan, 1971. 40. A. Homaifar and E. Maccormick. Simultaneous design of membeship function and rule sets for fuzzy controllers using genetic algorithms. IEEE Transaction on Fuzzy System, 3:129--139, 1995. 41. Y. Ichikawa and Y.Ishii. Retaining diversity of genetic algorithms for multivariable optimization and neural network learning. In In Proceedings of the IEEE International Conference on Neural Networks, pages 1110--1114, 1993. 42. P. Isasi, A. Sanchis, J. Molina, and A. Berlanga. A computational model of evolution: haploidy versus diploidy. Computers and Artificial Intelligence, 18(6):575--94, 1999. 43. J.-S. R. Jang. Anfis: Adaptive network based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 23(3):665--685, 1993. 44. J.-S. R. Jang, C. T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, 1997. 45. Y. H. Joo, H. S. Hwang, K. B. Kim, and K. B. Woo. Fuzzy system modeling by fuzzy partition and ga hybrid scheme. Fuzzy Sets and Systems, 86:279--288, 1997. 46. C. F. Juang, J. Y. Lin, and C. T. Lin. Genetic reinforcement learning through symbiotic evolution for fuzzy controller design. IEEE transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 30(2):290--302, 2000. 47. C. Karr. Genetic algorithms for fuzzy controllers. AI Expert, 6(2), 1991. 48. C. L. Karr and E. J. Gentry. Fuzzy control of ph using genetic algorithms. IEEE Transaction on Fuzzy Systems, 1:46--53, 1993. 49. K. Kiguchi, K. Watanabe, K. Izumi, and T. Fukuda. Application of multiple fuzzy-neuro force controllers in an unknown environment using genetic algorithms. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, pages 2106--2111, 2000. 50. B. Kosko. Neural networks and fuzzy systems: a dynamical systems approach. Prentice Hall, 1991. 51. J. R. Koza. Genetically breeding populations of computer programs to solve problems in artificial intelligence. In Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence, pages 6--9, 1990. 52. J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992. 53. J. R. Koza. Genetic Programming: Automatic Discovery of Reusable Programs. MIT Press, 1994. 54. T. Kuo and S.-Y. Hwang. A genetic algorithm with disruptive selection. In Proceedings of the Fifth International Conference onGenetic Algorithms, 1993. 55. J. E. Lansberry and L. Wozniak. Adaptive hydrogenerator governor tuning with a genetic algorithm. IEEE Transactions on Energy Conversion, 9(1):179--185, March 1994. 56. M. Lee and H. Takagi. Integrating design stages of fuzzy systems using genetic algorithms. In Proc. Second IEEE Inter. Conf. on Fuzzy System, pages 612--617, 1993. 57. C. T. Lin and C. P. Jou. Ga-based fuzzy reinforcement learning for control of a magnetic bearing system. IEEE Transactions on Systems, Man, Cybernetics, 30(2):276--289, 2000. 58. J. Liska and S. S. Melsheimer. Complete design of fuzzy logic systems using genetic algorithms. In Proc. Third IEEE International Conference on Fuzzy Systems, pages 1377--1382, 1994. 59. P. J. MacVicar-Whelan. Fuzzy sets for man-machine interactions. International Journal of Man-Machine Studies, 8:687--697, 1976. 60. E. H. Mamdani and S. Assilian. An experiment in linguistic systhesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1):1--13, 1975. 61. S. Massebeuf, C. Fonteix, LN. Kiss, I. Marc, and Pla F. Zaras K. Multicriteria optimization and decision engineering of an extrusion. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, pages 14--21, 1999. 62. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996. 63. S. Mitra and Y. Hayashi. Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Transactions on Neural Networks, 11(3):748--768, 2000. 64. M. Mizumoto. Fuzzy controls under various approximate reasoning methods. In Proceedings 2nd IFSA Congress, pages 143--146, 1987. 65. D. E. Moriarty and R. Mikkilainen. Efficient reinforcement learning through symbiotic evolution. Machine Learning, 22:11--32, 1996. 66. D. Nauck, F. Klawonn, and R. Kruse. Foundations of Neuro-Fuzzy Systems. Wiley, 1997. 67. D. Park, A. Kandel, and G. Langholz. Genetic-based new fuzzy reasoning models with application to fuzzy control. IEEE Transaction on Systems, Man, and Cybernetics, 24:39--47, 1994. 68. A. Parodi and P. Bonelli. A new approach of fuzzy classifier systems. In Proc. Fifth International Conference on Genetic Algorithms, pages 223--230, 1993. 69. W. Pedrycz. Genetic algorithms for learning in fuzzy relational structures. Fuzzy Sets and Systems, 69:37--52, 1995. 70. D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence: A Logical Approach. Oxford University Press, 1998. 71. I. Rechenberg. Evolutionsstrategie: Optimierung technischer System nach Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973. 72. C. Ryan, G. Moghadampour, and P. Tormanen. Diploidy without dominance means of genetic algorithms-case: frequency controller. In Proceedings of the Third Nordic Workshop on Genetic Algorithms and their Applications (3NWGA), pages 63--70, 1997. 73. R. J. Schalkoff. Artificial Neural Networks. McGraw-Hill, 1997. 74. H.-P Schwefel. Evolutionsstrategie und numerische optimierung. PhD thesis, Technische Universit at Berlin, Germany, May 1975. 75. R. E. Smith and D. E. Goldberg. Diploidy and dominance in artificial genetic search. Complex Systems, 6:251--285, 1992. 76. R. E. Smith and D. E. Goldberg. Diploidy and dominance in artificial genetic search. Complex Systems, 6:251--285, 1992. 77. S. F. Smith. A learning system based on genetic adaptive algorithms. PhD thesis, University of Pittsburgh, 1980. 78. R. J. Streifel, R. J. Marks II, R. Reed, J. J. Choi, and M. Healy. Dynamic fuzzy control of genetic algorithm parameter coding. IEEE Transactions on Systems, Man, and Cybernetic-Part B: Cybernetics, 29(3):426--433, 1999. 79. M. Sugeno and G. T. Kang. Structure identification of fuzzy model. Fuzzy Sets and Systems, 28:15--13, 1988. 80. T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on System, Man and Cybernetics, 15:116--132, 1985. 81. P. Thrift. Fuzzy logic synthesis with genetic algorithms. In Proc. 4th Int. Conf. Genetic Algorithms, pages 509--513, 1991. 82. M. Valenzuela-Rendon. The fuzzy classifier system: a classifier system to continuously varying variable. In Proc. Forth International Conference on Genetic Algorithms, pages 346--353, 1991. 83. R. R. Yager and D. P. Filev. Essentials of Fuzzy Modeling and Control. Wiley, 1994. 84. L. A. Zadeh. Fuzzy sets. Information and Control, 8:338--353, 1965. 85. L. A. Zadeh. Soft computing and fuzzy logic. IEEE Software, 11(6):48--56, 1994.
|