跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏志達
研究生(外文):Jyh-Da Wei
論文名稱:遲滯現象之系統建模
論文名稱(外文):System Modeling of Hysteresis Phenomena
指導教授:孫春在孫春在引用關係
指導教授(外文):Chuen-Tsai Sun
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:94
中文關鍵詞:遲滯現象有限訊號回應模型迴歸輸入模型前傳式神經網路時間延遲神經網路回饋式神經網路
外文關鍵詞:hysteresis phenomenonFIR modelARX modelfeed forward neural networktime delay neural networkrecurrent neural network
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1146
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
遲滯是與時間進程無關的記憶現象,遲滯系統的輸出訊號與其輸入訊號變動的速度是無關的。遲滯現象在許多物理研究領域上出現,例如:電磁學、電子學、熱力學、可塑性材料科學、以及機械力學等等。然而,這種與速率無關的記憶特質,使得遲滯系統模型非常難以建立。
現存的遲滯系統模型可以分為「局部記憶」及「非局部記憶」兩種。局部記憶模型只考慮目前的輸入輸出值,亦即,在系統的輸入輸出圖譜上的每一點,至多可以有二條曲線經過,當輸入值上升時,系統的輸出沿上升曲線變化,而當輸入值下降時,則由下降曲線決定輸出值。另外,非局部記憶模型在決定系統之輸出值時,則廣泛參考過去發生過的輸入極值。這兩種模型各有其缺點:局部記憶模型不能如非局部記憶模型有效的逼近一個真實的系統;而非局部記憶模型則需要大量的記憶空間,而且在系統運作上之計算也更為複雜。
因此,本文將新發展一個有效率的遲滯系統模型。在此之前,則先檢驗傳統的系統模型,例如:有限訊號回應模型、迴歸輸入模型、時間延遲神經網路、回饋式神經網路等等,測試其是否具有模擬遲滯現象的能力。文中首先以數位訊號處理的角度定義遲滯現象,然後分別以理論分析及數學程式模擬兩方面驗證傳統的系統模型不具有遲滯性質。
接下來,本文提出一個新的遲滯系統模型,此模型結合三個模組,亦即梯度分析、極值暫存、及輸出函數三部分。這樣的架構在接收到一個輸入的極值時,就決定一條啟動函數以供後續輸入值對應到系統輸出值。值得注意的是,此一啟動函數是由存放在極值暫存區的多項之前的數值所決定,因此這個模型同時具有非局部記憶而在工作型態上又同時具有類似局部記憶模型的方便性。
本文所提出的遲滯系統模型將應用在模擬地下水位及地層下陷之間的關係。而經濟學上的領先指標與共同指標之間的關連亦提出來討論。實驗結果顯示新提出的模型對於這些系統的模擬效果遠優於傳統的系統模型。這也意函地層下陷與經濟指標這些系統具有「與速率無關的記憶」。
在新提出的系統基礎上,本文另外發展一個新的語音辨識方法。有鑑於發音的速度不一致性,使得傳統語音辨識演算法複雜而困難,我們在此將引入新的遲滯模型,並以模型中所決定的參數作為固定長度的語音特徵,藉此將可在線性的時間複雜度內辨識出單一語音。
本文首先對遲滯現象提出數學定義,藉此驗證傳統的系統模型不具有遲滯性質。接下來則發展一個有效率的遲滯系統模型,並以此模型解釋地層下陷及經濟指標等遲滯相關系統的數據資料,最後則又將此模型應用在語音訊號的辨識。
Hysteresis is a unique type of dynamics. The output of a
hysteresis system is independent of input speed. This property is known as rate-independence, the defining characteristic
of hysteresis behavior. Hysteresis phenomena are frequently
observed in physical research domains, including magnetism,
plasticity, electronics, thermodynamics, materials, and mechanics. However, the unique property of rate independence makes modeling hysteresis behaviors extremely difficult.
Existing hysteresis models can be categorized into local and
nonlocal memory models. Local memory models consider the current
I/O values locally: a maximum of two curves pass through each
working point in the I/O diagram. For an increasing input, the
curve rises. If the input decreases, then a falling curve is
traced. Meanwhile, nonlocal memory models globally refer to past
extreme inputs while transducing the new input value to its
corresponding output. Both of these models have disadvantages.
Local memory models cannot approximate actual systems as closely
as do nonlocal memory models, whereas nonlocal memory models
require amount of memory to record past extreme values and are
computationally difficult.
Before developing a newly efficient hysteresis model, we must
examine whether conventional memory-related models, such as finite impulse response (FIR) models, autoregressive external input (ARX) models, time delay neural networks (TDNN), and recurrent neural networks (RNN) can simulate hysteresis behavior. This study defines hysteretic memory (rate-independent memory) and then conducts both of theoretical analysis and numerical simulations to examine that conventional system models are not hysteresis systems.
Subsequently, this study presents a novel model of hysteresis
phenomena. Combining three major blocks - the Gradient
Investigator (GI), Extreme-value Template (ET), and Output
Function (OF) - the proposed model approximates hysteresis
behavior, conveniently by determining an active polynomial
function once an extreme input value is reached. Notably, this
model includes nonlocal memory in the ET block and is as
computationally easy as local memory models of hysteresis.
The proposed model is applied to model the relation between
ground-water level and land subsidence. The connection between the economic leading and coincident indicators is also studied.
Experimental results reveal that our model approximates the
measured data more closely than conventional short-term memory
models do. This fact implies that the systems of land subsidence
and economic indicators are involved with rate independent memory.
Based on the proposed model, this study also presents a novel
means of recognizing voice signals. Assuming that the dynamic
speed of speaking primarily complicates speech recognition, we
adopt the parameters of our model as the fixed-length feature for recognition. Accordingly, reference words can be recognized in linear time. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently.
Restated, this study defines hysteretic memory (rate-independent
memory) and examines that conventional system models are not
hysteresis systems. Consequently, we develop an efficient hysteresis model and apply this model to explain the relation
between ground-water level and land subsidence, as well as the
connection between the economic leading and coincident indicators. Finally, the proposed model is also applied to voice signal recognition.
Abstract (in Chinese) . . . . . . . . . . . . . . . . . . . i
Abstract (in English) . . . . . . . . . . . . . . . . . . iii
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . vi
Contents . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . xi
List of Figures . . . . . . . . . . . . . . . . . . . . xiii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction to Hysteresis . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of this Study . . . . . . . . . . . . . . 5
2 Literature on Hysteresis . . . . . . . . . . . . . . . . 7
2.1 Review of Pertinent Literature . . . . . . . . . . . . 7
2.2 Mathematical Models . . . . . . . . . . . . . . . . . . 8
2.2.1 Local Memory Models . . . . . . . . . . . . . . . . . 9
2.2.2 Nonlocal Memory Models . . . . . . . . . . . . . . . 12
3 Defnition of Hysteresis System . . . . . . . . . . . . . 19
3.1 Defnition in Discrete Signal Processing Terms . . . . 19
3.1.1 Rate Independent Systems . . . . . . . . . . . . . . 19
3.1.2 Hysteresis Systems . . . . . . . . . . . . . . . . . 22
3.2 Review of Conventional System Models . . . . . . . . . 24
3.2.1 FIR and ARX Models versus Hysteresis . . . . . . . . 24
3.2.2 Mutilayer Proceptrons versus Hysteresis . . . . . . 24
3.2.3 Time Delay Neural Networks versus Hysteresis . . . . 26
3.2.4 Recurrent Neural Networks versus Hysteresis . . . . 28
3.3 Varying Appearance Speed Problem . . . . . . . . . . . 29
3.3.1 Impulse Response Analysis . . . . . . . . . . . . . 30
3.3.2 VASP versus Hysteresis Systems . . . . . . . . . . . 31
4 Numerical Simulations . . . . . . . . . . . . . . . . . 32
4.1 Simulating Preisach Model . . . . . . . . . . . . . . 32
4.1.1 Examination . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . 36
4.2 Regenerating Random Step Trajectories . . . . . . . . 36
4.2.1 Examination . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . 41
5 Hysteresis Model Using Extreme-Value Template . . . . . 43
5.1 Architecture of the Model . . . . . . . . . . . . . . 44
5.2 Determination of the Parameters . . . . . . . . . . . 47
5.2.1 Estimation of the Parametric Matrix . . . . . . . . 48
5.2.2 Selection of the Noise Tolerance and Recurrent Factors 49
5.3 Simulating the Preisach Model . . . . . . . . . . . . 51
5.4 Learning Random Step Trajectories . . . . . . . . . . 57
5.5 Function Approximation . . . . . . . . . . . . . . . . 61
6 Modeling of Physical Data . . . . . . . . . . . . . . . 64
6.1 Experiment on Land Subsidence . . . . . . . . . . . . 65
6.2 Experiments on Economic Indicators . . . . . . . . . . 68
6.3 Application to Voice Signal Recognition . . . . . . . 72
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . 75
7.1 Contributions of this Study . . . . . . . . . . . . . 75
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . 78
Appendix A: Data Set of Land Subsidence . . . . . . . . . 79
Appendix B: Data Set of Economic Indicators . . . . . . . 80
Bibliography . . . . . . . . . . . . . . . . . . . . . . . 83
Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Publication List of Jyh-Da Wei . . . . . . . . . . . . . . 94
[1] A. A. Adly and S. K. Abd-El-Hafiz, "Using neural networks
in the identification of preisach-type hysteresis models," IEEE
Transactions on Magnetics, vol. 34, pp. 629-635, May 1998.
[2] A. A. Adly and I. D. Mayergozy, "Simulation of
field-temperature effects in magnetic media using anisotropic
preisach models," IEEE Transactions on Magnetics, vol. 34, no.
4, pp. 1264-1266, 1998.
[3] J. K. Baker, Stochastic modeling for automatic speech
understanding, pp. 521-542. New York: Academic Press, 1975.
[4] Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term
dependencies with gradient is difficult," IEEE Transactions on
Neural Networks, vol. 5, pp. 157-166, Mar. 1994.
[5] J. Bernstein, The handbook of economic cycles. Business One
Irwin, 1991.
[6] G. Bertotti, "Energetic and thermodynamic aspects of
hysteresis," Physical Review Letters, vol. 76, pp. 1739-1743,
Mar. 1996.
[7] K. Bhattacharya, R. D. James, and P. J. Swart, "Relaxation
in shape-memory alloys. i. mechanical model," Acta Mater (USA),
vol. 45, pp. 4547-60, Nov. 1997.
[8] K. Bhattacharya, R. D. James, and P. J. Swart, "Relaxation
in shape-memory alloys. ii. thermo-mechanical model and roposed
experiments," Acta Mater (USA), vol. 45, pp. 4561-8, Nov. 1997.
[9] M. Brokate, N. Kenmochi, I. Muller, J. F. Rodriguez, and C.
Verdi, Phase Transitions and Hysteresis. Springer-Verlag, 1993.
[10] J. Cacko, "Simulation experiments in investigation of
fatigue degradation effects of dynamic processes," in European
Simulation Multiconference 1995 (S. M., S. M., and V. A.,
eds.), pp. 92-6, 1995.
[11] H. B. Callen, Thermodynamics and an introduction to
thermostatics. Wiley, New York, 1985.
[12] C. M. I. Campbell and K. S. Kamlani, "The reasons for wage
rigidity: Evidence from a survey of firms," The Quarterly
Journal of Economics, pp. 759-789, Aug. 1997.
[13] S. Can, M. S. Richards, and R. A. Pease, "A 3 v thermostat
circuit," in Proceedings of the 1996 BIPOLAR/BiCMOS Circuits
and Technology Meeting, pp. 105-108, 1996.
[14] C. R. Chang and I. Klik, "Thermal relaxation in magnetic
materials," Proc. Natl. Sci. Counc. Rep. China A, Phys. Sci.
Eng. (Taiwan), vol. 20, pp. 249-64, May 1996.
[15] B. J. Chapman, "Long-term unemployment: The dimensions of
the problem," Australian Economic Review (1993 Second Quarter),
pp.22-25, 1993.
[16] S. E. Christophe, "Hysteresis and the value of the u.s.
multinational corporation," Journal of Business, pp. 435-462,
July 1997.
[17] H. Constant-Machado, A. Stancu, J. Linares, and F. Varret,
"Thermal hysteresis loops in spin-crossover compounds analyzed
in terms of classical preisach model," IEEE Transactions on
Magnetics, vol. 34, no. 4, pp. 2213-2219, 1998.
[18] B. de Vries and J. C. Principe, "The Gamma model - a new
neural model for temporal processing," Neural Networks, vol. 5,
pp. 565-576, 1992.
[19] J. R. Deller, J. G. Proakis, and J. H. L. Hansen,
Discrete-Time Processing of Speech Signals. New York: Macmillan
Publishing Company, 1993.
[20] K. Fabian and T. von Dobeneck, "Isothermal magnetization
of samples with stable preisach function: A survey of
hysteresis, remanence, and rock magnetic parameters," Journal
of Geophysical research, vol. 102, pp. 17695-17677, Aug. 1997.
[21] G. Friedman, "Method for characterization of hysteresis in
two dimensions," IEEE Transactions on Magnetics, vol. 36, pp.
216-222, Jan. 2000.
[22] F. P. Gnadinger, "Ferroelectrics for nonvolatile RAMs,"
IEEE Spectrum, pp. 30-33, July 1989.
[23] G. C. Goodwin and K. S. Sin, Adaptive Filtering,
Prediction and Control. Engle-wood Clis, New Jersey:
Prentice-Hall, 1984.
[24] C. W. J. Granger and Z. Ding, "Varieties of long memory
models," Journal of Econometrics, pp.61-77, July 1996.
[25] S. Hochreiter and J. Schmidhuber, "Long short-term
memory," Neural Computation, vol. 9, pp. 1735-80, Nov. 1997.
[26] J. H. Holland, Adaptation in Nature and Articial Systems.
The University of Michigan, 1975.
[27] S. Y. R. Hui, J. G. Zhu, and V. S. Ramsden, "A generalized
dynamic circuit model of magnetic cores for low and high
frequency applications. ii. Circuit model formulation and
implementation," IEEE Transactions on Power Electronics, vol.
11, pp. 251-259, Mar. 1996.
[28] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and
Soft Computing. Upper Saddle River, New Jersey: Prentice-Hall,
1997.
[29] F. Jelinek, "Continuous speech recognition by statistical
methods," in Proceedings of the IEEE, vol. 64, pp. 532-556,
Apr. 1976.
[30] D. C. Jiles, "Frequency dependence of hysteresis curves in
conducting magnetic materials," Journal of Applied Physics,
vol. 76, pp. 5849-5855, Nov. 1994.
[31] D. C. Jiles, "Modelling the effects of eddy current losses
on frequency dependent hysteresis in electrically conducting
media," IEEE Transactions on Magnectics, vol. 30, pp.
4326-4328, Nov. 1994.
[32] D. C. Jiles and D. L. Atherton, "Theory of ferromagnetic
hysteresis (invited)," Journal of Applied Physics, vol. 55, pp.
2115-2120, Mar. 1984.
[33] J. F. Jogensen, K. Carneiro, and L. L. Madsen, "Hysteresis
correction of scanning tunneling microscope images," Journal of
Vacuum Science & Technology B, vol. 12, pp. 1702-1704, May/June
1994.
[34] R. Johansson, System modeling and identification.
Englewood Clis, New Jersey: Prentice-Hall, 1993.
[35] G. R. Kahler, E. D. Torre, and F. Vajda, "Parameter
identification of the complete-moving-hysteresis model for HTS
steel," IEEE Transactions on Magnetics, vol. 30, pp. 4374-4376,
Nov. 1994.
[36] M. Kandil, "Sticky wage or sticky price? analysis of the
cyclical behavior of the real wage," Southern Economic Journal,
pp. 440-459, Oct. 1996.
[37] C. Koiter, "General theorems for elastic-plastic solids,"
in Progress in solid mechanics, vol. I (I. N. Sneddon and R.
Hill, eds.), pp. 165-221, North-Holland, Amsterdam, 1960.
[38] M. A. Krasnosel''skii and A. V. Pokrovskii, Systems with
Hysteresis. Moscow: Nauka, 1983.
[39] M. A. Krasnosel''skii and A. V. Pokrovskii, Systems with
Hysteresis. New York: Springer-Verlag, 1989.
[40] S. Y. Kung, Digital Neural Networks. Englewood Clis, New
Jersey: Prentice-Hall, 1993.
[41] D. T. Lin, J. E. Dayho, and P. A. Ligomenides,
"Trajectory production with the adaptive time-delay neural
network," Neural Networks, vol. 8, no. 3, pp. 447-461, 1995.
[42] T. Lin, B. G. Horne, P. Tino, and C. L. Giles, "Learning long-term dependencies in NARX recurrent neural networks," IEEE
Transactions on Neural Networks, vol. 7, pp.1329-1338, Nov.
1996.
[43] M. LoBue, V. Basso, G. Bertotti, and K. H. Muller,
"Magnetic aftereffect in spring magnets and the preisach model
of hysteresis," IEEE Transactions on Magnetics, vol. 33, pp.
3862-3865, Sept. 1997.
[44] I. D. Mayergoyz, Mathematical Models of Hysteresis. New
York: Springer-Verlag,1991.
[45] J. Millman and A. Grabel, Microelectronics. McGRAW-HILL,
2nd ed., 1987.
[46] Y. Mualem, Theory of universal hysteretical properties of
unsaturated porous media. Water Resour. Res. Public., 1979.
[47] I. Nagy and Z. Suto, "Repetitive and chaotic processes in
current controlled induction motor," in ISIE ''96. Proceedings
of the IEEE International Symposium on Industrial Electronics,
vol. 2, pp. 946-51, 1996.
[48] M. P. Niemira and P. A. Klein, Forecasting nancial and
economic cycles. New York: John Wiley & Sons, 1994.
[49] O. Omidvar and D. L. Elliott, Neural Systems for Control.
Academic Press, 1997.
[50] A. V. Oppenheim and R. W. Schafer, Discrete-time signal
processing. Upper Saddle River, N.J.: Prentice Hall, 2nd ed.,
1999.
[51] J. C. Piquette and S. E. Forsythe, "One-dimensional
phenomenological model of hysteresis. i. development of the
model," Journal of the Acoustical Society of America, vol. 106,
pp. 3317-3327, Dec. 1999.
[52] F. Preisach, "Uber die magnetische nachwirkung,"
Zeitschrift fur Physik, vol. 94, pp. 277-302, 1935.
[53] A. Reimers and E. D. Torre, "Fast preisach-based
magnetization model and fast inverse hysteresis model," IEEE
Transactions on Magnetics, vol. 34, pp. 3857-3866, Nov. 1998.
[54] D. E. Rumelhart, G. Hinton, and R. J. Williams, "Learning
internal representations by error propagation," in Paralled
distributed processing: explorations in the microstructure of
cognition (D. E. Rumelhart and J. L. McClelland, eds.), vol. 1,
ch. 8, pp. 318-362, Cambridge, MA.: MIT Press, 1986.
[55] H. Sakoe and S. Chiba, "Dynamic programming algorithm
optimization for spoken work recognition," IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 26, pp. 43-49,
Feb. 1978.
[56] C. Serpico and C. Visone, "Magnetic hysteresis modeling
via feed-forward neural networks," IEEE Transactions on
Magnetics, vol. 34, pp. 623-8, May 1998.
[57] M. Sjostrom, "Frequency analysis of classical preisach
model," IEEE Transactions on Magnetics, vol. 35, no. 4, pp.
2097-2103, 1999.
[58] R. C. Smith, "Hysteresis modeling in magnetostrictive
materials via preisach operators," Technical Report TR-97-23,
Institute for Computer Applications in Science
and Engineering, May 1997.
[59] N. L. Stein, P. A. Ornstein, B. Tversky, and C. Brainerd,
Memory for Everyday and Emotional Events. Lawrence Erlbaum
Associates, 1997.
[60] D. W. Tank and J. J. Hopfield, "Concentrating information
in time: Analog neural networks with applications to speech
recognition problems," IEEE Transactions on Acoustics, Speech,
And Signal Processing, vol. 37, pp. 328-339, Mar. 1989.
[61] G. Tao and P. V. Kokotovic, "Adaptive control of plants
with unknown hysteresis," IEEE Transactions on Automatic
Control, vol. 40, pp. 200-212, Feb. 1995.
[62] M. D. Tom and M. F. Tenorio, "A neural computation model
with short-term memory," IEEE Transactions on Neural Networks,
vol. 6, pp. 387-397, Mar. 1995.
[63] N. B. Toomarian and J. Barhen, "Learning a trajectory
using adjoint functions and teacher forcing," Neural Networks,
vol. 5, no. 3, pp. 473-484, 1992.
[64] E. D. Toore and F. Vajda, "Parameter identification of the
complete-moving hysteresis model using major loop data," IEEE
Transactions on Magnetics, vol. 30,
pp. 4987-5000, Nov. 1994.
[65] H. Tresca, "Memoriesur l''ecoulement des corps solides
soumis a de fortes pressions," C. R. Acad. Sci. Paris, vol.
59:754, 1864.
[66] C. Truesdell and W. Noll, "The nonlinear field theories of
mechanics," in Encyclopedia of physics vol. III/3, Springer,
Heidelberg, 1965.
[67] M. Uribe, "Hysteresis in a simple model of currency
substitution," Journal of Monetary Economics, pp.185-202, Sept.
1997.
[68] F. Vallet, J. G. Cailton, and P. Refregier, "Linear and
nonlinear extension of the pseudo-inverse solution for learning
boolean functions," Europhysics Letters,
vol. 9, no.4, pp. 315-320, 1989.
[69] A. Visintin, ed., Models of hysteresis. New York: Longman
Scientic & Technical, 1993.
[70] A. Visintin, Dierential models of hysteresis. New York:
Springer-Verlag, 1994.
[71] S. Wadhwa, R. Caprihan, and S. Kumar, "Performance of a
hysteresis based control strategy for a exible machine
operating under a periodic status monitoring policy," Computers
& Industrial Engineering, pp.557-574, July 1997.
[72] A. C. Waltham, Ground subsidence. Blackie, 1989.
[73] J. D. Wei and C. T. Sun, "A neural network model of
hysteresis," in Proceedings of the 1996 Asian Fuzzy Systems
Symposium, pp. 412-417, Soft Computing in Intelligent Systems
and Information Processing, 1996.
[74] J. D. Wei and C. T. Sun, "Constructing hysteretic memory
in neural networks," IEEE Transactions on Systems Man and
Cybernetics - Part B: Cybernetics, vol. 30, pp. 601-609, Aug.
2000.
[75] J. D. Wei and C. T. Sun, "Simulation of hysteresis systems
using a piecewise polynomial function," IEEE Signal Proceeding
Letters, p. to appear, 2002.
[76] J. D. Wei and C. T. Sun, "Varying appearance speed problem
in system modeling and a solution via rate independent memory,"
IEICE Transactions on Fundamentals of Electronics
Communications and Computer Sciences, vol. E85-A, pp.
1119-1128, May 2002.
[77] P. J. Werbos, "Backpropagation through time: What it does
and how to do it," Proceedings of The IEEE, vol. 78, pp.
1550-1560, Oct. 1990.
[78] P. J.Werbos, The Roots of Backpropagation.
Wiley-Interscience, 1994.
[79] B. N. Whittaker and D. J. Reddish, Subsidence :
occurrence, prediction and control. Elsevier, 1989.
[80] S.-K. Yan, Land subsidence and saltwater intrusion in
coastal areas. UMI Dissertation Information Service, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top