|
References of Self-Organizing Neural Network for Seismic Horizon Linking: [1] N. Keskes and Ph. Zaccagnino, “Image analysis techniques for seismic data,” Society of Exploration Geophysicists 52nd Ann. Int. Meet. Expanded Tech. Prog. Abstr., Dallas, TX, 1982, pp.220-221. [2] N. Keskes, Ph. Zaccagnino, and P. Mermey, “Automatic extraction of 3-D seismic horizons,” Society of Exploration Geophysicists 53rd Ann. Int. Meet. Expanded Tech. Prog. Abstr., Las Vegas, NV, 1983, pp.557-559. [3] G. Sibille, N. Keskes, J. M. Fontaine, and J. L. Lequeux, “Enhancement of the perception of seismic facies and sequences by image analysis techniques,” Society of Exploration Geophysicists 54th Ann. Int. Meet. Expanded Tech. Prog. Abstr., Atlanta, GA, 1984, pp.447-480. [4] S. Y. Lu, “A string-to-string correlation algorithm for image skeletonization,” Proc. Int. Joint Conf. Pattern Recognition, Munich, Germany, October 1982, pp.178-180. [5] Yao-Chou Cheng and Shin-Yee Lu, “The binary consistency checking scheme and its applications to seismic horizon detection,” IEEE Trans. Pattern Anal. Mach. Intell. 11, April 1989, pp.439-447. [6] K. Y. Huang, “Branch and bound search for automatic linking process of seismic horizons,” Pattern Recognition, Vol. 23, No. 6, 1990, pp.657-667. [7] T. Kohonen, Self-Organization and Associative Memory, 2nd Edition, Springer-Verlag, 1987. [8] T. Kohonen, Self-Organization and Associative Memory, 3rd Edition, Springer-Verlag, 1989. [9] Kohonen, T., “The 'neural' phonetic typewriter,” Computer, Vol. 21. Issue 3, March 1988, pp.11—22. [10] Angéniol, B., Vaubois, G., and Texier, J., “Self-organizing feature maps and the traveling salesman problem,” Neural Networks, Vol.1, 1988, pp.289-293. [11] M. B. Dobrin, Introduction to Geophysical Prospecting, 3rd ed. New York: McGraw-Hill, 1976, ch. 10. [12] C. E. Payton, Ed., “Seismic stratigraphy — applications to hydrocarbon exploration,” AAPG Memoir, 26, Tulsa, Am. Assn. Petroleum Geologists, 1977. [13] K. Y. Huang, K. S. Fu, S. W. Cheng and T. H. Sheen, “Image processing of seismogram: (A) Hough transformation for the detection of seismic patterns; (B) Thinning processing in the seismogram,” Pattern recognition, vol. 18, 1985, pp.429-440. [14] K. Y. Huang and K. S. Fu, “Detection of bright spots in seismic signal using tree classifiers,” Geoexploration 23, 1984/85, pp.121-145. [15] Richard P. Lippman, “An introduction to computing with neural nets,” IEEE ASSP Mag., April 1987, pp.18-20. [16] T. Kohonen, Self-Organizing Maps, Springer-Verlag, 1995. References of Node Growing of Perceptrons By Sequential Classification Technique: [1] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning internal representations by error propagation," in Parallel Distributed Processing: Expolorations in the Microstructure of Cognition. Cambridge, MA: MIT Press, ch. 8, vol. 1: Foundations, pp. 318-362, 1986. [2] R. P. Lippmann, "An introduction to computing with neural nets," IEEE ASSP Magazine, vol. 4, pp. 4-22, April 1987. [3] K. Funahashi, "On the approximate realization of continuous mappings by neural networks," Neural Network, vol. 2, pp. 183-192, 1989. [4] R. Hecht-Nielson, "Theory of the back-propagation neural network," in Proc. IEEE Int. Joint Conf. Neural Networks, Washington, D. C., vol. 1, pp. 593-606, 1989. [5] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Network, vol. 2, pp. 359-368, 1989. [6] E. D. Karnin, "A simple procedure for pruning back-propagation trained neural networks," IEEE Transactions on Neural Networks, vol. 1, no. 2, pp.239-242, 1990. [7] J. Sietsma and R. J. F. Dow, "Creating artificial neural networks that generalize," Neural Networks, vol. 4, pp. 67-79, 1991. [8] K. S. Fu, Sequential Methods in Pattern Recognition and Machine Learning, Academic Press, New York, 1968. [9] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter, "The multilayer perceptron as an approximation to a Bayes optimal discriminant function," IEEE Transactions on Neural Networks, vol. 1, no. 4, pp. 296-298, 1990. [10] M. B. Dobrin and C. H. Savit, Introduction to Geophysical Prospecting, Fourth Ed., McGraw-Hill, Inc., 1988. [11] Kou-Yuan Huang, "Pattern recognition to seismic exploration," in Automated Pattern Analysis in Petroleum Exploration, edited by Ibrahim Palaz and Sailes K. Sengupta, Springer-Verlag, New York, pp. 121-154, 1992. [12] M. K. Hu, "Visual patterns recognition by moment invariants," IRE Trans. Information Theory, vol. IT-8, pp. 179-187, 1962. [13] G. Mirchandani and W. Cao, "On hidden nodes for neural nets," IEEE Transactions on Circuits and Systems, Vol. 36, No. 5, pp. 661-664, May 1989. References of Neural Network for Robust Recognition of Seismic Patterns: [1] F. Aminzadeh, S. Katz, and K. Aki, ”Adaptive neural nets for generation of artificial earthquake precursors,” IEEE Trans. Geosci. Remote Sensing, GE-32, pp. 1139-1143, 1994 [2] L. Bruzzone and D. Prieto, “A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote sensing images,” IEEE Trans. Geosci. Remote Sensing, vol. 37, no.2, pp. 1179-1184, March 1999. [3] C. H. Chen and b. Shrestha, “Classification of multi-sensor remote sensing images using self-organizing feature maps and radial basis function networks,” International Geoscience and Remote Sensing symposium, July 24-28, 2000, Proceedings, pp.711-713. [4] P. Dysart and J. Pulli, “Regional seismic event classification at the NORESS array: Seismological measurements and the use of trained neural networks,” Bull. Of seis. Soc. of am., 80, pp. 1910-1933, 1990. [5] K. Y. Huang, W. H. Liu, and I. C. Chang, “Hopfield model of neural networks for detection of bright-spot,” 59th Ann. Internat. Mtg., Soc, Explor. Geophys., Expanded Abstracts, 1989, pp. 444-446. [6] K. Y. Huang and J. Y. Liaw, “Neocognitron of a neural network for seismic pattern recognition,” 62nd Ann. Internat. Meg., Soc. Explor. Geophys., Expanded Abstracts, 1992, pp. 26-29. [7] K. Y. Huang, “Neural networks for seismic principal components analysis,” IEEE Trans. Geosci. Remote Sensing, vol. 37, pp. 297-311, Jan. 1999. [8] D. H. Johnston, “seismic attribute calibration using neural networks,” 63rd Ann. Internat. Mtg., Soc, Explor. Geophys., Expanded Abstracts, 1993, pp. 250-253. [9] M. D. McCormack, D. E. Zaucha, and D. W. Dushek, “First-break refraction event picking and seismic data trace editing using neural networks,” Geophysics, vol. 58, pp. 67-78, 1993. [10] M. M. Poulton, B. K. Sternberg, and C. E. Glass, “Location of subsurface targets in geophysical data using neural networks,” Geophysics, vol. 57, pp. 1534-1544, 1992. [11] J. Schmidt and F. A. Hadsell, “Neural network stacking velocity picking,” 62nd Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1992, pp. 18-21. [12] S. B. Serpico and F. Roli, ”Classification of multi-sensor remote sensing images by structured neural networks,” IEEE Trans, Geosci. Remote Sensing, vol. 33, no. 3, pp. 562-578, May 1995. [13] L. X. Wang and J. M. Mendel, “Adaptive minimum prediction-error deconvolution and source wavelet estimation using Hopfield neural networks,” Geophysics, vol. 57, pp. 670-679, 1992. [14] L. Gupta, M. R. Sayeh and r. Tammana, “A neural network approach to robust shape classification,” Pattern Recognition, vol. 23, pp. 563-568, 1990. [15] K. Y. Huang, H. T. Yen, and C. S. Han, “Neural networks for robust recognition of printed Chinese characters,” Computer Processing of Oriental Languages, vol. 10, pp. 425-442, 1997. [16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Rumelhart, D. E., and McClelland, J. L., Eds., PDP, Vol. 1: M.I.T. Press, 1986, pp. 318-362. [17] M. B. Dobrin, Introduction to Geophysical Prospecting, 3rd ed. New York: McGraw-Hill, 1976, ch. 10. [18] C. E. Payton, Ed., “Seismic stratigraphy — applications to hydrocarbon exploration,” AAPG Memoir, 26, Tulsa, Am. Assn. Petroleum Geologists, 1977. [19] K. Y. Huang, K. S. Fu, S. W. Cheng, and T. H. Sheen, “Image processing of seismogram: (A) Hough transformation for the detection of seismic patterns (B) Thinning processing in the seismogram,” Pattern Recognition, vol. 18, no. 6, pp. 429-440, 1985. [20] M. K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans. Info. Theory, vol. IT-8, pp. 179-187, 1962. [21] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading, Massachusetts: Addison-Wesley, 1993. [22] S. Y. Kung, J. N. Hwang, and S. W. Sun, “Efficient modeling for multilayer feedforward neural nets,” Proc. IEEE Conf. On Acoustic, Speech Signal Processing, New York, 1988, pp. 2160-2163. [23] G. Mirchandini and W. Cao, “On hidden nodes in neural nets,” IEEE Trans. Circuits and Systems, vol. 36, pp. 661-664, 1989.
|