(3.236.175.108) 您好!臺灣時間:2021/03/01 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張君華
論文名稱:蜂巢式類神經網路於震測水平連接及圖型識別
論文名稱(外文):Cellular Neural Networks For Seismic Horizon Linking And Pattern Recognition
指導教授:黃國源黃國源引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:蜂巢式類神經網路震測水平連接圖型識別
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們運用蜂巢式類神經網路(Cellular neural network)於震測水平連接(Seismic Horizon Linking)及圖型識別(Pattern Recognition).在震測水平連接方面,我們經由建構數種不同的條件,以其形成的能量方程式和蜂巢式類神經網路之能量方程式做比較,完成網路訓練的過程(Training Process),然後我們利用這完成訓練的網路來處理震測水平連接的問題.在圖型識別的方面,我們將蜂巢式類神經網路設計成聯想記憶體(Associative Memory),然後再用它來辨識圖型.我們針對二值的圖型(Bipolar pattern)做分類辨識的運用.在我們的實驗中,不論震測水平連接或圖型識別,均有良好的實驗結果.

目 錄
中 文 摘 要…..…………………………………………………….…..i
英 文 摘 要……………..………………………………………….….ii
誌 謝…………………………..……………………………………….iii
目 錄…………………………………………………………………...iv
表 目 錄……………………………………………………………….vi
圖 目 錄……………………………………………………………...viii
第 一 章 概 論….……………………………………………1
1.1 動機………………………………………………1
1.2 論文架構..………………………………………..2
第 二 章 蜂巢式類神經網路於震測水平之連接…………..3
2.1 蜂巢式類神經網路………………….……….….3
2.2 運動方程式與能量之關係……..……………….6
2.3 震測水平連接………………………….………..9
2.4 例子…………………………………………….26
2.5 實驗…………………………………………….32
第 三 章 蜂巢式類神經網路於圖型之識別….…………..46
3.1 聯想記憶體……………………………………..46
3.2 運用聯想記憶體做圖型辨識…………………..63
3.3 例子……………………………………………..65
3.4 實驗……………………………………………..73
第 四 章 結論與討論……………..………………..……….. 82
REFRENCES…………………………………………………………………. 83

REFERENCES
[1] L. O. Chua and Lin Yang, “Cellular Neural Networks: Theory,” IEEE Trans. on CAS, vol. 35 no. 10, pp.1257-1272, 1988.
[2] M. Forti and A. Tesi, “ New conditions for global stability of neural networks with application to linear and quadratic programming problems,” IEEE Trans. Cir. Syst. I, vol. 42, pp. 354-366, July, 1995.
[3] L. O. Chua and Lin Yang, “Cellular Neural Networks: Applications,” IEEE Trans. on CAS, vol.35, no.10, pp. 1273-1290, 1988.
[4] L. O. Chua, “Dynamic nonlinear networks: State of the art,” IEEE Trans. Circuits Syst., pp.1059-1087, 1980.
[5] Kou-Yuan Huang, “Neural network for seismic horizon picking,” IEEE World Congress on Computational Intelligence, The 1998 IEEE International Joint Conference on. Volume: 3, 1998.
[6] J. J. Hopfield, and T. W. Tank, “Neural computation of decisions in optimization problems,” Biological Cybernetics, 52, pp. 141-152, 1985.
[7] Kou-Yuan Huang, W. R. I. Chang & H. T. Yen, “Self Organising Neural network for picking Seismic horizons,” Proc. of Annual SEG Meeting, pp. 313-315, San Francisco, 1990.
[8] Kou-Yuan Huang, “Branch and bound search for automatic linking process of seismic horizons,” Pattern Recognition, Volume 23, No. 6, pp. 657-667, 1990
[9] Kou-Yuan Huang, “Hopfield model of neural networks for detection of bright-spot,” presented at the 59 th Ann. Internat. Mtg., Soc. Explor. Geophys., 1989.
[10] Kou-Yuan Huang, “Seismic horizon picking using a Hopfield network,” invited, in Geophysical Applications of Artificial Neural Networks and Fuzzy Logic, edited by William Sandham and Miles Leggett, Kluwer Academic Publishers, 2000.
[11] M. Brucoli, L. Carnimeo, and G. Grassi, “Associative memories design using discrete-time second-order neural networks with local interconnections,” IEEE Trans. Cir. Syst. I, vol. 44, pp. 153-158, Feb, 1997.
[12] M. Brucoli, L. Carnimeo, and G. Grassi, “A global approach to the design of discrete-time cellular neural networks for associative memories,” Int. J. Circuit Theory Appl., vol. 24, no. 4, pp. 489-510, 1996.
[13] R. Perfetti, “ Dual-mode space-varying self-designing cellular neural networks for associative memories,” IEEE Trans. Cir. Syst. I, vol. 46, pp. 1281-1285, Oct, 1999.
[14] D. Liu and A. N. Michel, “ Sparsely interconnected neural networks for associative memories with applications to cellular neural networks,” IEEE Trans. Cir. Syst. II, vol. 41, pp. 295-307, April, 1994.
[15] R. Perfetti, “ Frequency domain stability criteria for cellular neural networks, ” Int. J. Circuit Theory Appl., vol. 25, no. 1, pp. 55-68, 1997.
[16] M. P. Joy and V. Tavsanoglu, “ Circulant matrices and the stability of a class of CNNs, ” Int. J. Circuit Theory Appl., vol. 24, no. 1, pp. 7-13, 1996.
[17] C. Guzelis and L. O. Chua, “Stability analysis of generalized cellular neural networks, ” Int. J. Circuit Theory Appl., vol. 21, no. 1, pp. 1-33, 1993.
[18] G. Grassi, “ A new approach to design cellular neural networks for associative memories,” IEEE Trans. Cir. Syst. I, vol. 44, pp. 835-838, Sept, 1997.
[19] M.Forti and A. Tesi, “New conditions for global stability of neural networks with application to linear and quadratic programming problems,” IEEE Trans. Cir. Syst. I, vol. 42, pp. 354-366, July, 1995.
[20] M. Brucoli, L. Carnimeo, and G. Grassi, “ Discrete-time cellular neural networks for associative memories with learning and forgetting capabilities,” IEEE Trans. Cir. Syst. I, vol. 42, pp. 396-399, July, 1995.
[21] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications. New Yoke: Wiley, 1974.
[22] D. Liu and A. N. Michel, “ Cellular neural networks for associative memories,” IEEE Trans. Cir. Syst. II, vol. 40, pp. 119-121, 1993.
[23] C. Peterson and J. R. Anderson, “A mean field theory learning algorithm for neural network,” Complex Systems, vol.1, no.5, pp. 995-1019, 1987.
[24] S. Tan, J. Hao, and J. Vandewalle, “Cellular Neural Networks as a model of associative memories,” in Proc. 1st Int. Workshop Cellular Neural Networks and Their Applications (CNNA`90), Budapest, Hungary, pp. 26-35, 1990.
[25] G. Martinelli and R. Perfetti,” Associative memory design using space-varying cellular neural networks,” in Proc. 2nd Int. Workshop on Cellular Neural Networks and Their Applications (CNNA`92), Munich, Germany, pp. 117-122, 1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔