跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴玉旻
研究生(外文):Yu-Min Tai
論文名稱:圖書館借閱記錄探勘系統
論文名稱(外文):A Data Mining System for Mining Library Borrowing History Records
指導教授:柯皓仁柯皓仁引用關係楊維邦楊維邦引用關係
指導教授(外文):Hao-Ren KeWei-Pang Yang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:89
中文關鍵詞:相關規則探勘廣義相關規則探勘多重最小支持度廣義相關規則探勘探勘系統借閱記錄
外文關鍵詞:Association Rule MiningGeneralized Association Rule MiningGeneralized Association Rule Mining with Multiple Minimum SupportsMining SystemBorrowing History Records
相關次數:
  • 被引用被引用:47
  • 點閱點閱:2059
  • 評分評分:
  • 下載下載:537
  • 收藏至我的研究室書目清單書目收藏:7
隨著網際網路的發展與電腦科技的日益進步,資訊數位化已成為世界的趨勢,電子圖書館也在這股資訊潮流下日漸成熟,而如何利用電腦技術以提昇圖書館對讀者的服務品質亦成為各圖書館努力的目標。
由於圖書館的借閱記錄有如讀者使用圖書館資源的最佳證據,因此本論文藉由分析交通大學圖書館的借閱記錄以了解讀者借閱館藏的關聯性,再根據以往讀者借閱的關聯性將館藏有效地推薦給其他讀者,讓交通大學圖書館在讀者探索知識的過程中扮演著積極主動的角色。
本研究根據圖書館借閱記錄的特性,選擇適合圖書館的相關規則演算法並加以改良應用至廣義相關規則探勘(Generalized Association Rule Mining)及多重最小支持度廣義相關規則探勘(Generalized Association Rule Mining with Multiple Minimum Supports),實作適合圖書館的資料探勘系統「圖書館借閱記錄探勘系統」。讓館員藉由輸入讀者借閱記錄得到最新的館藏借閱相關規則,針對不同系所的讀者找出不同的相關規則。亦應用「中國圖書分類法」找出讀者借閱關聯類別,且可針對不同階層的類別設定不同的最小支持度門檻值,探勘多重最小支持度廣義相關規則,並結合交通大學個人化數位圖書資訊環境 (PIE@NCTU) 將相關館藏推薦給讀者。
With the rapid development of Internet, digitization has been a world trend. The proliferation of Internet also encourages the development of electronic libraries. In the era of new information technology, how to make use of computer technology to provide readers better services has been the target of all libraries.
The borrowing history of patrons is one excellent evidence to track patrons’ interests, in view of this, we aim at finding the association of the collections in National Chiao Tung University (NCTU) Library by analyzing the borrowing history records of NCTU Library. Furthermore, we recommend the associated collections to patrons according to the findings. We expect that NCTU Library can play an active role in the knowledge discovery of NCTU patrons.
In order to achieve the above goal, this thesis chooses the suitable association rule algorithm H-Mine for mining library records and modifies H-Mine to generalized association rule mining and association rule mining with multiple minimum supports. We also implement a data mining system suitable for libraries, the Library Borrowing History Records Mining System. Librarians can get the latest association rules by inserting new library borrowing history records into database, and find different association rules according to patrons of different departments and institutes. This system also utilizes “New Classification Scheme for Chinese Libraries” to mine associated categories and collections. Furthermore, this system integrates the association rules into a persobalized system, PIE@NCTU (Personalized Information Environment for National Chiao Tung University Library), to recommend associated collections to patrons.
英文摘要 I
中文摘要 III
誌謝 IV
表目錄 VII
圖目錄 VIII
第一章 圖書館記錄探勘系統簡介 1
第一節 研究動機及目的 1
第二節 研究方法及目標 2
第三節 論文架構 3
第二章 資料探勘相關研究工作 5
第一節 資料探勘 5
第二節 相關規則探勘 8
第三節 相關規則探勘之延伸問題 19
第三章 以H-Mine為基礎之廣義相關規則演算法 28
第一節 廣義相關規則演算法H-Mine(Generalized) 28
第二節 多重最小支持度廣義相關演算法H-Mine(MMS) 31
第四章 圖書館借閱記錄探勘系統之實作 38
第一節 圖書館資料探勘系統說明 38
第二節 應用於個人化數位圖書資訊環境 54
第五章 圖書館借閱記錄探勘系統評估 58
第一節 實驗環境 58
第二節 探勘效益評估 59
第三節 H-Mine(Generalized) 及H-Mine(MMS) 效益評估 63
第四節 系統效益評估總結 65
第六章 結論與未來研究方向 66
第一節 結論與討論 66
第二節 未來研究方向 67
參考文獻 70
附錄一:相關規則探勘結果(部分) 72
附錄二:身份類別相關規則探勘結果(部分) 75
附錄三:廣義相關規則探勘結果(部分) 77
附錄四:多重最小支持度廣義相關規則探勘結果(部分) 80
[1] P. Adriaans, and D. Zantinge. “Data Mining,” Addison-Wesley, Harlow, 1996.
[2] R. Agrawal, T. Imielinski and A. Swami. “Mining Association Rules between Sets of Items in Large Databases,” Proc. of the 1993 ACM SIGMOD Conference, 1993.
[3] R. Agrawal and R. Srikant. “Fast Algorithms for Mining Association Rules,” Proc. of the 20th VLDB Conference, 1994.
[4] R. C. Agarwal, C.C Aggarwal, and V. V. V. Prasad. “A Tree Projection Algorithm for Generation of Frequent Item Sets,” Journal of Parallel and Distributed Computing 61, 350-371, 2001.
[5] M. S. Chen, J. Han, and P. S. Yu. “Data Mining: An Overview from a Database Perspective,” IEEE Transactions on Knowledge and Data Engineering, 1996.
[6] D. W. Cheung, S.D. Lee, and B. Kao. “A General Incremental technique for Maintaining Discovered Association Rules”. Proc. of the 15th Int‘l Conf. on Database Systems for Advanced Applications, 1997.
[7] C. I. Ezeife, and Y. Su. “Mining Incremental Association Rules with Generalized FP-Tree,” Candian Conference on AI 2002.
[8] A. Kent et al. “Use of Library Materials: the University of Pittsburgh Study,” PA.: Pittsburgh University, 1979.
[9] J. Han, J. Chiang, S. Chee, J. Chen, Q. Chen, S. Cheng, W. Gong, M. Kamber, K. Koperski, G. Liu, Y. Lu, N. Stefanovic, L. Winstone, B. Xia, O. R. Zaiane, S. Zhang, and H. Zhu, “DBMiner: A System for Data Mining in Relational Databases and Data Warehouses,” Proc. CASCON''97: Meeting of Minds, Toronto, Canada, November 1997
[10] J. Han, J. Pei, and Y. Yin. “Mining Frequent Patterns without Candidate Generation,” Proc. of the ACM-SIGMOD 2000 Conference on Management of Data, Dallas, May 2000.
[11] Jiawei Han and Micheline Kamber. “Data Mining: Concepts and Techniques,” Morgan Kaufmann, 2000.
[12] Bing Liu, Wynne Hsu and Yiming Ma. “Mining Association Rules with Multiple Minimum Supports.” ACM SIGKDD 1999, Pages 337 — 341 .
[13] J. Pei, J. Han, and R. Mao. “CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets,“ Proc. 2000 ACM-SIGMOD Int. Workshop on Data Mining and Knowledge Discovery (DMKD''00)}, Dallas, TX, May 2000
[14] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. “H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases,” Proc. 2001 Int. Conf. on Data Mining (ICDM''01)}, San Jose, CA, Nov. 2001.
[15] N. L. Sarda and N. V. Srinivas. “An Adaptive Algorithm for Incremental Mining of Associatin Rules”. IEEE, 1998.
[16] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. In VLDB’95, pages 432—443.
[17] R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations and performance improvements,”IBM Research Division Almaden Research Center, 1995.
[18] R. Srikant and R. Agrawal, “Mining generalized association rules.” VLDB, 1995.
[19] R. Srikant and R. Agrawal, “Mining generalized association rules.” Future Generation Computer Systems, 1997.
[20] M. C. Tseng, and W. Y. Lin. “Mining Generalized Association Rules with Multiple Supports.” Data Warehousing and Knowledge Discovery 2001 .
[21] M. J. Zaki and C. J. Hsiao. “CHARM: An Efficient Algorithm for Closed Association Mining,” In Technical Report 99-10, Computer Science, Rensselaer Polytechnic Institute, 1999.
[22] M. J. Zaki. “Generating Non-Redundant Association Rules,” 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, August 2000
[23] M. J. Zaki and C. J. Hsiao. “CHARM: An Efficient Algorithm for Closed Itemset Mining,” In Proc. 2002 SIAM Int. Conf. Data Mining, Arlington, VA, April 2002.
[24] 卜小蝶,「以圖書借閱記錄探勘加強圖書資源利用之探討」,中國圖書館學會會報,第66期,頁59-72,2001.
[25] 楊雅雯,「個人化數位圖書資訊環境─以PIE@NCTU為例」,交通大學資訊科學研究所碩士論文,2001.
[26] 吳安琪,「利用資料探勘的技術及統計的方法增強圖書館的經營與服務」,交通大學資訊科學研究所碩士論文,2001.
[27] 柯皓仁,楊雅雯,吳安琪,楊維邦,「圖書館自動化系統中個人化及群體化資訊服務之設計」.
[28] 賴永祥,「中國圖書分類法」,2001增訂八版,文華圖書管理資訊股份有限公司.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top