跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李光立
研究生(外文):Kuang-Lee Li
論文名稱:具一致性與可調性的摘錄型生物資料探勘仲介者
論文名稱(外文):A Unified, Adjustable and Extractable Biological Mining-Broker
指導教授:袁賢銘袁賢銘引用關係
指導教授(外文):Shyan-Ming Yuan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:125
中文關鍵詞:生物資料探勘者資料探勘查詢XML意義性摘錄回饋快取聯邦制度
外文關鍵詞:biological brokerdata mining queryingXMLmeaningfulnessextractionfeedbackcachefederation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在進入後基因時代的今天,網際網路上的生物資料數量正以驚人的速度在成長著。多種異質性的資料來源﹑不同的探勘應用程式與知識分析師的存在,導致語句與語意上的異質性現象層出不窮。本論文提出一個具一致性與可調性的摘要型生物資料探勘仲介者,用以整合與克服形式與意義上的異質性現象。該生物資料探勘仲介者提供一個聯邦機制的架構,藉以增強系統中以回饋模式為基礎之意境導向快取機制的功能。而透過模擬實驗也顯示了,那些儲存在生物資料探勘仲介者中快取資料庫的摘要型生物資料,經由生物資料探勘仲介者所提供之以回饋模式為基礎的意境導向快取機制,得以維持並確保其意義性及有效性。
Now we have stepped into the post-genetic age. The volume of biological data in the Internet is increasing in an extremely high speed. With multiple heterogeneous data sources, different mining applications and knowledge analysts, it results in syntactic and semantic heterogeneities. The unified, adjustable and extractable biological mining-broker is proposed to integrate and overcome heterogeneities of form and meaning in this thesis. It provides the federated model to enhance the feedback-based meaningful cache mechanism. The experimental simulation also shows that the feedback-based meaningful cache mechanism ensures and maintains the meaningfulness and usefulness of extraction cache information in the biological mining-broker.
Abstract (In Chinese) ..................................... I
Abstract ................................................. II
Acknowledgements ........................................ III
Contents ................................................. IV
List of Figures .......................................... VI
Chapter 1 Introduction .................................... 1
1.1 Motivation ............................................ 1
1.2 Objectives ............................................ 3
1.3 Thesis Organization ................................... 5
Chapter 2 Backgrounds and Related Works ................... 6
2.1 Backgrounds ........................................... 6
2.1.1 Biological Data Mining .............................. 6
2.1.2 Extensible Markup Language (XML) ................... 10
2.1.3 Simple API for XML (SAX) ........................... 11
2.1.4 Wrapper ............................................ 13
2.2 Related Works ........................................ 14
2.2.1 Target Informatics Net (TINet) ..................... 14
2.2.2 TAMBIS ............................................. 17
Chapter 3 Architecture of Biological Mining-Broker ....... 21
3.1 BIO-Info. Interface of BMB ........................... 26
3.1.1 Multi-Source Query Process ......................... 28
3.1.2 Federated Forums ................................... 31
3.2 Raw Data Cache of BMB ................................ 33
3.3 Directory & Extraction Cache of BMB .................. 36
3.3.1 Multi-Source Directory ............................. 38
3.3.2 Extraction Cache Databases ......................... 40
3.4 Federated Repository Center of BMB ................... 44
3.5 Template Developer’s Kits of BMB .................... 52
3.6 Mining Interface of BMB .............................. 58
3.6.1 Mining Query Process ............................... 61
3.6.2 Mining Feedback Process ............................ 63
3.6.3 Federated Forums ................................... 66
Chapter 4 Workflow and Scenarios of Biological Mining-Broker
.......................................................... 69
4.1 Workflow of Biological Data Mining Querying .......... 70
4.2 Cache-based Biological Data Mining Querying .......... 73
4.3 Mining Querying through Data Sources ................. 78
4.4 Feedback-based Meaningful Cache Mechanism ............ 82
4.5 Federated Model ...................................... 90
Chapter 5 Implementation Issues and Experiments .......... 98
5.1 Implementation Issues ................................ 98
5.2 Experimental Environment ............................ 102
5.3 Experiments ......................................... 102
5.4 Simulation Analysis ................................. 106
Chapter 6 Conclusion and Future Works ................... 112
6.1 Conclusion .......................................... 112
6.2 Future Works ........................................ 113
Bibliography ............................................ 116
[1] B. A. Eckman, A. S. Kosky, and L. A. Laroco, Jr., “Extending Traditional Query-Based Integration Approaches for Functional Characterization of Post-Genomic Data”, Bioinformatics, Vol. 17, No. 7, Pages: 587-601, 2001.
[2] The TAMBIS (Transparent Access to Multiple Biological Information Sources) System, http://bagel.cs.man.ac.uk/
[3] Paton, N.W.; Stevens, R.; Baker, P.; Goble, C.A.; Bechhofer, S.; Brass, A., “Query Processing in the TAMBIS Bioinformatics Source Integration System”, Scientific and Statistical Database Management, 1999. Eleventh International Conference, Pages: 138-147, 1999.
[4] The Ontology of TAMBIS System (TaO), http://www.ontologos.org/OML/..%5COntology%5CTAMBIS.htm
[5] Stevens, R.; Paton, N.W.; Baker, P.; Goble, C.A.; Bechhofer, S.; Brass, A., “TAMBIS Online: A Bioinformatics Source Integration Tool”, Scientific and Statistical Database Management, 1999. Eleventh International Conference, Pages: 138-147, 1999.
[6] Bertone, P.; Gerstein, M., “Integrative Data Mining: The New Direction in Bioinformatics”, IEEE Engineering in Medicine and Biology Magazine, Vol. 20, Issue: 4, Pages: 33-40, July-Aug. 2001.
[7] Cook, D.J.; Holder, L.B.; Su, S.; Maglothin, R.; Jonyer, I., “Structural Mining of Molecular Biology Data”, IEEE Engineering in Medicine and Biology Magazine, Vol. 20, Issue: 4, Pages: 67-74, July-Aug. 2001.
[8] J. Han and M. Kamber, “Data Mining Concepts and Techniques,” Morgan Kaufmann Publishers, 2001.
[9] National Center for Biotechnology Information (NCBI), http://www.ncbi.nlm.nih.gov/
[10] DNA Data Bank of Japan (DDBJ), http://www.ddbj.nig.ac.jp/
[11] European Molecular Biology Laboratory (EMBL), http://www.embl-heidelberg.de/
[12] World Wide Web Consortium (W3C), Extensible Markup Language (XML), http://www.w3c.org/XML/
[13] World Wide Web Consortium (W3C), Extensible Markup Language (XML) Specification, DTD, http://www.w3c.org/XML/1998/06/xmlspec-report
[14] Simple API for XML (SAX), http://www.saxproject.org/
[15] Reynaud, C.; Sirot, J.-P.; Vodislav, D., “Semantic Integration of XML Heterogeneous Data Sources”, Database Engineering & Applications, 2001 International Symposium, Pages: 199-208, 2001.
[16] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levyd, Dan Suciu, “A Query Language for XML”, Computer Networks, Vol. 31, Pages: 1155-1169, 1999.
[17] Bertino, E.; Catania, B., “Integrating XML and Databases”, IEEE Internet Computing, Vol. 5, Issue: 4, Pages: 84-88, July-Aug. 2001.
[18] Liu, L.; Pu, C.; Han, W., “XWRAP: An XML-enabled Wrapper Construction System for Web Information Sources”, Data Engineering, 2000. Proceedings. 16th International Conference, Pages: 611-621, 2000.
[19] Swartout, W.; Tate, A., “Ontologies”, IEEE Intelligent Systems, Vol. 14, Issue: 1, Pages: 18-19, Jan.-Feb. 1999.
[20] Chen, I.-M.A.; Kosky, A.S.; Markowitz, V.M.; Szeto, E., “Developing and Accessing Scientific Databases with the Object-Protocol Model (OPM) Data Management Tools”, Scientific and Statistical Database Management, 1997. Proceedings, Ninth International Conference, Pages: 114-115, 1997.
[21] Sugiyama, Y.; Horowitz, E., “OPM: An Object Process Modeling Environment”, Software Process Workshop, 1989. Experience with Software Process Models, Proceedings of the 5th International, Pages: 134-136, 1990.
[22] Estivill-Castro, V., “Collaborative Knowledge Acquisition with a Genetic Algorithm”, Tools with Artificial Intelligence, 1997. Proceedings, Ninth IEEE International Conference, Pages: 270-277, 1997.
[23] N. Wang and X. Xu., “A Method to Build Ontology“, The Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region, 2000. Proceedings, Vol. 2, Pages: 672-673, 2000.
[24] World Wide Web Consortium (W3C), Extensible Markup Language (XML) Schema, http://www.w3c.org/XML/Schema
[25] Klein, M., “XML, RDF, and Relatives”, IEEE Intelligent Systems, Vol. 16, Issue: 2, Pages: 26-28, March-April 2001.
[26] World Wide Web Consortium (W3C), Document Object Model (DOM), http://www.w3c.org/DOM/
[27] Kun Hsiang Wu; Chin Hsing Chen; Jiann Der Lee, “A Fuzzy Potential Approach with the Cache Genetic Learning Algorithm for Robot Path Planning”, Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st Century, IEEE International Conference, Vol. 1, Pages: 478-482, 1995.
[28] The OMG’s CORBA Website, http://www.corba.org/
[29] HMMER: Profile Hidden Markov Models for Sequence Analysis, http://hmmer.wustl.edu/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top