跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋俊
研究生(外文):Wen-Chun Sung
論文名稱:以利潤最大化為目標之貨櫃船隊定線模式
論文名稱(外文):A Profit Maximization Model for Routing Containerships
指導教授:謝尚行謝尚行引用關係
指導教授(外文):Shang-Hsing Hsieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:運輸科技與管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:80
中文關鍵詞:軸輻路網貨櫃船隊
外文關鍵詞:Hub-and-Spoke networkContainerships
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
近年來,因貨櫃船大型化的趨勢,海運定期貨櫃船運逐漸發展成軸輻路網的營運模式。即是:運用大型貨櫃船航行於軸心港(hub ports)之間,小型貨櫃船航則行於集貨港(feeder ports)與軸心港之間,進行集貨的工作。
航商在運用軸輻路網的方式營運時,最基本考量的因素為:母船多靠幾個軸心港,營運成本會增加,但運費收入(每航次之載櫃率)也能增加,關鍵就在於利潤(運費收入-營運成本)能否增加。在面對此問題時,以成本最小化為目標的軸心港位置選擇模式,所能提供的資訊就略有不足。因此,本研究建立一個以利潤最大化為目標之『貨櫃船隊定線模式(a model for routing containerships)』,利用模式分析求解航商應選擇停靠哪些軸心港,才能有最大的利潤。
本研究建立之模式分為兩部份,先決定軸輻路網上主線母船停靠的軸心港(Model 1),其餘港口(集貨港)再指派連接至最接近的軸心港,利用子船於各支線上完成集貨的工作(Model 2),兩個部份的目標值總和,即為本模式利潤最大化之目標值。模式求解方面,以O’Kelly(1987)提出的HEUR 1的解法概念求解Model 1;而Model 2部份,則允許集貨港與軸心港不直接相連,並以迴圈航線為支線上子船的航行方式,配合主線母船轉運的櫃量,來決定各支線上子船船隊數目。本研究最後以越太平洋航線(遠東∼北美西岸)為例,進行實例分析。

In recent years, transoceanic containerships are built larger and larger so as to lead to the formation of marine hub-and-spoke network. In the networks, large ships run between hub ports, while small ships are used as feeders between feeder ports.
In the networks, the factor for the liner to operate depends on the ability to produce the profit. A containership berths more ports will not only increase the operation costs, but also generate the revenue. The critical point is the effect of trade off (revenue - cost) will benefit for the containership routing. However, the previous models were unable to provide the liner with the selection of the hubs in order to seed maximum profit. The main purpose of this paper is, therefore, to propose a hub-and-spoke model of routing containerships to solve the problem.
The model consists of two parts. One, Model 1 decides the location of hub ports. The other, Model 2 assigns adequate feeders on the branch network. The total sum of two objective values in models is the maximum profit. The concept of HEUR 1 which O’Kelly proposed in 1987 is used to solve the function of Model 1. Model 2 decides the number of feeders on branch network, given the loop type routing to match with the traffic flow. This paper ends with an application of the real Trans-Pacific routing and the sensitivity analysis.

第一章 緒論 ……………………………………………………1
1.1 研究動機 ……………………………………………………1
1.2 研究目的 ……………………………………………………2
1.3 研究範圍 ……………………………………………………3
1.4 研究流程 ……………………………………………………3
第二章 文獻回顧 ……………………………………………………5
2.1 軸輻路網模式 ……………………………………………………5
2.2 船舶定線問題 ……………………………………………………12
第三章 貨櫃船定線模式之構建 ……………………………………14
3.1 問題說明與模式概述 ………………………………………14
3.2 軸心港泊靠選擇模式(Model 1) ……………………………15
3.2.1 模式假設 ……………………………………………………16
3.2.2 模式內容 ……………………………………………………16
3.3 集貨港泊靠選擇模式(Model 2) ……………………………21
3.3.1 模式假設 ……………………………………………………23
3.3.2 模式內容 ……………………………………………………23
第四章 模式求解 …………………………………………………33
4.1 模式求解概述 ……………………………………………………33
4.2 軸心港泊靠選擇模式之求解 ……………………………36
4.3 集貨港泊靠選擇模式之求解 ……………………………37
第五章 實例應用 …………………………………………………38
5.1 實例背景說明 ……………………………………………………38
5.2 實例求解結果與分析 ………………………………………44
第六章 敏感度分析 …………………………………………………56
6.1 船舶航行成本敏感度分析 ………………………………………56
6.2 運量變動敏感度分析 ……………………………………………57
6.3 運價變動敏感度分析 ……………………………………………59
第七章 結論建議 …………………………………………………61
7.1 結論 ……………………………… ……………………………61
7.2 建議 ……………………………………………………………62
參考文獻 ………………………… …………………………………64
附錄 …………………………… ………………………………67

1.謝尚行、張斐茹,“軸輻路網在定期貨櫃船定線之應用”,運輸計畫季刊,Vol.30, No.4, pp.871-890, 2001.
2.游至誠,“允許集貨港與軸心港不直接相連之海運軸輻路網模式”,國立交通大學運輸工程與管理學系研究所碩士論文,2001.
3.盧華安、徐育彰,“定期貨櫃航線選擇與船隊部署之研究”,運輸計畫季刊,Vol.30, No.3, pp.577-601, 2001.
4.台灣省交通處,"各國際(內)商港港埠費率成本結構委託調查分析研究",1998.
5.上海港務局網站資料(http://www.54port.org)
6.Wayne K. Talley, “Optimal containership size,” MARIT. POL. MGMT., 1990, VOL. 17, NO. 3, 165-175.
7.Aykin, Turgut, “On the Location of Hub Facilities,” Transportation Science Vol. 22, No. 2, pp. 155-157, 1988.
8.Campbell, James F., "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, 72, 387-405, 1994.
9.Campbell, James F., "Hub location and the p-hub median problem", Operations Research, 44, 923-935, 1996.
10.Cullinane, Kevin and Mahim Khanna, “Economies of Scale in Large Container Ships,” Journal of Transport Economics and Policy, Volume33, Part 2, pp.185-208, 1999.
11.Deborah Bryan, “Extensions to the Hub Location Problem: Formulation and Numerical Examples,” Geographical Analysis, Vol.30, No.4, pp.315-330, 1998.
12.Gilman, S., "Hub port economics," Marine Transport Center, University of Liverpool, UK, pp.41-48, 1987.
13.Hall, Randolph W., “Comparison of Strategies for Routing Shipments Through Transportation Terminals,” Transportation Research-A, Vol. 21, No. 6, pp. 421-429, 1987.
14.Jaillet, Patrick, Mark Song and Gang Yu, “Airline Network Design and Hub Location Problems,” Location Science, Vol.4, No.3, pp.195-212, 1996.
15.Jansson, J. O. and Dan Shneerson, "The Optimal Ship Size," Journal of Transport Economics and Policy, pp.217-238, Sep. 1982.
16.Kuby, M.J. and Robert Gray, “The Hub Network Design Problem with Stopovers and Feeders: The Case of Federal Express,” Transportation Research A, 27, 1-12, 1993.
17.Jaramillo, D. I. and Perakis, A.N., “Fleet deployment optimization for liner shipping. Part 2: Implementation and results,” Maritime Policy and management, 18, 235-262, 1991.
18.O'Kelly, Morton E., “The Location of Interacting Hub Facilities,” Transportation Science, Vol. 20, No. 2, pp. 92-105, 1986.
19.O'Kelly, Morton E., “A quadratic integer program for the location of interacting hub facilities,” European Journal of Operational Research 32, pp.393-404, 1987.
20.O'Kelly, Morton E., “Hub Facility Location with Fixed Costs,” Papers in Regional Science, Vol. 71, No. 3, pp. 293-306, 1992.
21.O'Kelly, M. E. and Miller, H. J., “The Hub Network Design Problem: A Review and Synthesis,” Journal of Transport Geography, Vol. 2, No. 1, pp. 31-40, 1994.
22.O'Kelly, Morton E., D. L. Bryan, D. Skorin-Kapov and J. Skorin-Kapov, 1996, “Hub Network Design with Single and Multiple Allocation: A Computational Study,” Location Science, Vol.4, No.3, pp.125-138.
23.O'Kelly, Morton E. and D. L. Bryan, “Hub Location With Flow Economics of Scale,” Transportation Research B, Vol.32, No.8, pp.605-616, 1997.
24.O'Kelly, Morton E., “Hub-and-spoke network in air transportation: an analytical review,” Journal of regional Science, VOL 39, NO.2, pp. 275-295, 1999.
25.Perakis, A.N. and Jaramillo, D. I., “Fleet deployment optimization for liner shipping. Part 1: Background, problem formulation and solution approaches,” Maritime Policy and management, 18, 183-200, 1991.
26.Powell, B.J. and Perakis, A.N., “Fleet deployment optimization for liner shipping: an integer programming model,” Maritime Policy and management, Vol.24, No. 2, pp.183-191, 1997.
27.Rana, K. and Vickson, R.G., “A model and solution algorithm for optimal routing of a time-charted containership,” Transportation Science, 22, 83-95, 1988.
28.Rana, K. and Vickson, R.G., “Routing containerships using Lagrangian relaxation and decomposition,” Transportation Science, 25, 201-214, 1991.
29.Seong-Cheol Cho and A.N. Perakis, “Optimal Liner Fleet Routing Strategies,” Maritime Policy and Management, Vol. 23, No. 3, pp.249-259, 1996.
30.Skorin-Kapov, Darko, Jadranka Skorin-Kapov, and M. E. O'Kelly, "Tight linear programming relaxations of uncapacitated p-hub median problems," European Journal of Operational Research, 94, 582-593, 1996.
31.UNITED NATIONS, United Nation Conference on Trade and Development, TD/B/C.4/AC.7/10, 20, “Development and Improvement of ports”, pp.1-60, August 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top