跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 07:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林其蔚
研究生(外文):Chi-Wei Lin
論文名稱:動態車流模擬與動態交通路網模式構建之研究
論文名稱(外文):Dynamic Traffic Flow Simulation And Dynamic Network Traffic Flow Modeling
指導教授:卓訓榮卓訓榮引用關係
指導教授(外文):Hsun-Jung Cho
學位類別:碩士
校院名稱:國立交通大學
系所名稱:運輸科技與管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:129
中文關鍵詞:Macroscopic dynamic traffic flow modelsnumerical schemesmulti-lane dynamic traffic flow modeltraffic network
相關次數:
  • 被引用被引用:2
  • 點閱點閱:405
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
動態車流模擬可用來預測道路上的車流變化情況,以作為交通管理者的決策分析工具,其亦可提供即時的交通路況資訊,為實現智慧型運輸系統所不可或缺的重要環節。
巨觀的動態車流模式乃是將車流行為視為一連續流體,而以雙曲型偏微分方程式來表示。然而,由於非線性偏微分方程式不易求解,通常沒有解析解的存在,且在不同的初始條件或不同的邊界條件下,將會導致不同的解,所以一般都需要透過數值方法來求取近似解。
過去相關的車流模擬研究幾乎都集中在討論單一路段中,單一車道上的車流行為,多車道上的車流行為尚未廣泛地被討論,且目前多車道車流行為的研究多以微觀的角度來進行。因此,本研究希望能夠以目前已經發展的單一車道巨觀動態車流模式為基礎,構建能夠描述多車道車流行為的動態車流模式,並以交通錄影資料來驗證模式構建時所做的行為假設。
除此之外,本研究尚將討論的對象延伸至交通路網的規模,藉由結合描述路段車流行為的巨觀動態車流模式與描述節點車流分配的巨觀路徑選擇模式構建一個完整的動態交通路網模式。
Dynamic traffic flow simulations can be used to forecast the variations of the traffic flow on a roadway section. Thus, it can be an analytic tool for making traffic control policies. Also, it can provide real-time traffic information, which is an important part in implementing the Intelligent Transportation System (ITS).
Macroscopic dynamic traffic flow models regard the traffic flow as a continuous fluid, which is in the form of hyperbolic partial differential equation. However, the nonlinear partial differential equations are difficult to resolve, and there does not exist analytic solutions. Moreover, different solutions will be derived under distinct initial or boundary conditions. Therefore, it needs numerical schemes to obtain the approximations.
Most of the studies of traffic flow simulation in the past are focused on single-lane roadway sections. There are few discussions about the traffic flow behavior on multi-lane roadway sections, and for the time being the studies of multi-lane roadway sections are mostly in the microscopic point of view. Thus, a multi-lane dynamic traffic flow model based on a proposed single-lane macroscopic dynamic flow model will be developed in this thesis, and the assumptions of traffic flow behavior will be verified by traffic video records.
In addition, the discussion subject will be extend into traffic networks, and an overall traffic network model will be construct by combining the macroscopic dynamic traffic flow model describing the traffic flow propagation behavior on links and the macroscopic route choice model describing the traffic flow splitting behavior on nodes.
Chapter 1 Introduction………………………………………………………………1
1.1 Motivation……………………………………………………………………1
1.2 Objective……………………………………………………………………..2
1.3 Content……………………………………………………………………….4
1.4 Methodology and Scheme…………………………………………………5
Chapter 2 Literature Review………………………………………………………..7
2.1 The Development and Evolution of Dynamic Traffic Flow Models7
2.2 A Review of Numerical Schemes for Conservation Laws…….20
2.2.1 First-Order Explicit Difference Schemes……………………21
2.2.2 Higher-Order Explicit Difference Schemes…………………24
2.2.3 Implicit Difference Schemes……………………………………26
2.2.4 The Courant-Friedrichs-Lewy Condition………………………28
2.3 Network assignment models……………………………………………30
2.4.1 The Mathematical Programming Approach…………………31
2.4.2 The Optimal Control Theory Approach……………………..36
2.4.3 The Variational Inequality Approach………………………….40
2.4.4 The Simulation-Based Approach………………………………42
Chapter 3 Formulation and Numerical Simulations of One-way, Single- lane Traffic Flow Models………………………………………………..45
3.1 Jiang''s Continuum Model………………………………………………45
3.2 Godunov Scheme………………………………………………………….49
3.3 Numerical Simulations……………………………………………………58
3.3.1 Simulation example 1……………………………………………58
3.3.2 Simulation example 2……………………………………………61
3.3.3 Simulation example 3……………………………………………65
Chapter 4 Formulation and Numerical Simulations of One-Way, Multi- Lane Traffic Flow Models…………………………………………………67
4.1 Formulation of One-Way, Multi-Lane Traffic Flow Models………67
4.2 The Arrangement and Analysis of Traffic Data……………………74
4.3 Numerical Simulations of the One-Way, Multi-Lane Traffic
Flow Model……………………………………………………………80
4.3.1 Simulation example 1……………………………………………80
4.3.2 Simulation example 2……………………………………………84
Chapter 5 Dynamic Traffic Network Models……………………………………88
5.1 Definitions of the Dynamic Network Loading Problem…………89
5.2 Modeling of Network Links and Nodes………………………………90
5.2.1 Modeling of Network links………………………………………91
5.2.2 Modeling of Network Nodes…………………………………….93
5.3 The Overall Network Model…………………………………………….97
Chapter 6 Conclusions and Suggestions………………………………………100
6.1 Conclusions………………………………………………………………..100
6.2 Suggestions………………………………………………………………..101
6.3 Future Works………………………………………………………………102
Reference……………………………………………………………………………104
Appendix……………………………………………………………………………112
A.1 Syntax of MATHEMATICA 4……………………………………………112
A.1.1 Plotting lists of data in two-dimensional…………………112
A.1.2 Plotting lists of data in three-dimensional………………113
A.1.3 Plotting dual lists of data in multi-dimensional…………114
A.2 Lane Changing Record…………………………………………………116
[1] Adamo, V., Astarita, V., Cantarella, G. E. & Cascetta, E. (1999).A doubly dynamic traffic assignment model for planning application, 14th International Symposium on Theory of Traffic Flow.
[2] Allsop, R. E. (1974). Some possibilities for using traffic control to influence trip distribution and route choice. Proceedings of the 6th International Symposium on Transportation and Traffic Theory. A. H. Sydney and A. W. Reed Pty Ltd., Artarmon, New South Wales, 345-372.
[3] Allsop, R. E. & Charlesworth, J. A. (1977). Traffic in a signal-controlled road network: an example of different signal timings inducing different routes. Traffic Engineering and Control, 18(5), 262-264.
[4] Astrarita, V. (1995). Flow propagation description in dynamic network loading models. In: Proceedings of the Fourth International Conference on Application of Advanced Technologies in Transportation Engineering (AATT), American Society of Civil Engineers, Capri, 27-30.
[5] Astrarita, V. (1996). A continuous time link model for dynamic network loading based on travel time function. In: the 13th International Symposium on Theory of Traffic Flow, Lyon,Elsevier: Amsterdam. 79-102.
[6] Astrarita, V. (2002). Node and link models for network traffic flow simulation. Mathematical and Computer Modelling, 35, 643-656.
[7] Bando, M. & Hasebe, K., & Nakayama, A. (1995). Dynamical model of traffic congestion and numerical simulation. Physical Review E, 51(2), 1035-1042.
[8] Cantarella, G. E. & Improta, G. (1991). Iterative procedure for equilibrium network traffic signal setting. Transp. Res. A, 25(5), 241-249.
[9] Cantarella, G. E. & Cascetta, E. (1995). Dynamic processes and equilibrium in transportation networks: Towards a unifying theory. Transportation Science, 29, 305-329.
[10] Cantarella, G. E. (1999). A doubly dynamic traffic assignment model for planning applications. In Ceder, A. (Eds.), Proceedings of the 14th International Symposium on Transportation and Traffic Theory, (pp.373-395). Israel: Jerusalem.
[11] Carey, M. (1986). A constraint qualification for a dynamic traffic assignment model. Transportation Science, 20(1), 55-58.
[12] Carey, M. (1987). Optimal time-varying flows on congested network. Operations Research, 35, 58-69.
[13] Carey, M. & McCartnet, M. (2002). Behaviour of a whole-link travel time model used in dynamic traffic assignment. Transpn. Res. B, 36, 83-95.
[14] Chen, H. K. & Hsueh, C. F. (1998a). A model and an algorithm for the dynamic user-optimal route choice problem. Transpn. Res. B, 32, 219-234.
[15] Chen, H. K. & Hsueh, C. F. (1998b). A discrete-time dynamic user-optimal departure time/route choice model. Journal of Transportation Engineering, ASCE, 124(3), 246-254.
[16] Dafermos, S. C. (1980). Traffic equilibrium and variational inequalities. Transportation Science, 14, 42-54.
[17] Dafermos, S. C. & Nagurney, A. (1984). Stability and sensitivity analysis for the general network equilibrium-travel choice model. Proceedings of 9th International Symposium on Transportation and Traffic Theory, VNU Science Press, Utrecht, The Netherlands, 217-234.
[18] Daganzo, C. F. (1995a). Properties of link travel time functions under dynamic loads. Transpn. Res. B, 29(2), 95-98.
[19] Daganzo, C.F.(1995b). Requiem for second-order fluid approximations of traffic flow. Transpn. Res. B, 29(4), 277-286.
[20] Del Castillo, J. M., Pintado, P., & Benitez, F. G. (1994). The reaction time of drivers and the stability of traffic flow. Transpn. Res. B, 28(1), 35-60.
[21] Dickson, T. J. (1981). A note on traffic assignment and signal timings in a signal-control road network. Transpn. Res. B, 15(4), 267-271.
[22] Emmerink, R. H. M. (1996). Information and pricing in road transport. Theoretical and applied models. Thesis Publishers, Amsterdam.
[23] Fisk, C. & Boyce D. E. (1983). Alternative Variational inequality formulations of network equilibrium travel choice problem. Transportation Science, 17, 454-463.
[24] Fisk, C. S. (1990). Traffic assignment and the lane choice problem. Transpn. Res. B, 24(5), 375-389.
[25] Friesz, T. L., Luque, J., Tobin, R. L., & Wie, B. W. (1989). Dynamic network traffic assignment considered as a continuous time optimal problem. Operation Research, 37(6), 893-901.
[26] Friesz, T. L., Bernstein, D., Smith, T. E., Tobin, R. L., & Wie, B. W. (1993). A variational inequality formulation of the dynamic network user equilibrium problem. Operation Research, 41(1), 179-191.
[27] Gartner, N. H. (1976). Area traffic control and network equilibrium. Proceedings of the International Symposium on Traffic Equilibrium Methods, Springer-Verlag.
[28] Gazis, D. C., Herman, R., & Rothery, R. W. (1961). Nonlinear follow-the-leader models of traffic flow. Operation Research, 9, 545-567.
[29] Gerlough, D. L. & Huber, M. J. (1975). Traffic Flow Theory. Transportation Research Board, National research Council, Washington, D. C.
[30] Ghali, M. O. & Smith, M. J. (1991). New dynamic model to evaluate the performance of urban traffic control systems and route guidance strategies. Transportation Research Record, 1306, 33-39.
[31] Ghali, M. O. & Smith, M. J. (1994). Comparisons of the performances of three responsive traffic control policies, taking drivers’ day-to-day route-choice into account. Traffic Engineering and Control, 35(10), 555-560.
[32] Godunov, S. K. (1959). Finite difference method for numerical computations of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271-306.
[33] Haberman, R. (1977). Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow. Prentice-Hall .
[34] Hu, T. Y. & Mahmassani, H. S. (1997). Day-to-day evolution of network flows under real-time information and reactive signal control. Transpn. Res.C, 5(1), 61-69.
[35] Jayakrishnan, R., Tsai, W. K. & Chen, A. (1995). A dynamic traffic assignment model with traffic-flow relationships. Transpn. Res.C, 3(1), 51-72.
[36] Janson, B. N. (1991). Dynamic traffic assignment for urban road networks. Transpn. Res.B, 25 (2/3), 143-161.
[37] Janson, B. N. (1992). Dynamic traffic assignment with schedule delay. Paper Presented at 72nd Annual Meeting, Transportation Research Board, Washington, DC.
[38] Janson, B. N. & Robles, J. (1995). A quasi-continuous dynamic traffic assignment model. Transportation Research Record, 1493, 199-206.
[39] Jiang, R., Wu, Q. S., & Zhu, Z. J. (2002). A new continuum model for traffic flow and numerical tests. Transp. Res. B, 36, 405-419.
[40] Lax, P. D. (1954). Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 154-193.
[41] Leutzbach, W. (1972). Introduction to the Theory of Traffic Flow. New York: Springer-Verlag.
[42] Lighthill, M. J. & Whitham, G. B. (1955). On kinematic waves: II. A theory of traffic flow on long crowded roads, Ser. A 229(1178), 317-345. London: Proc. R. Sco.
[43] Liu, G., Lyrintzis, A. S., & Michalopoulos, P. G. (1998). Improved high-order model for freeway traffic flow. Transportation Research Record, 1644, 37-46.
[44] Mahmassani, H. S., Hu, T. Y., Peeta, S. & Ziliaskopoulos, A. (1994). Development and testing of dynamic traffic assignment and simulation procedures for ATIS/ATMS applications. Technical Report DTFH61-90- R00074-FG, Center for Transportation Research, The University of Texas at Austin.
[45] Mahmassani, H. S. (1996). Dynamics of commuter behavior: recent research and continuing challenges. Understanding Travel Behavior in an Era of Change, Pergamon.
[46] McShane, W. R. & Roess, R. P. (1990). Traffic Engineering. Prentice-Hall.
[47] Merchant, D. K. & Nemhauser, G. L. (1978a). A model and an algorithm for the dynamic traffic assignment problems. Transportation Science, 12(3), 183-199.
[48] Merchant, D. K. & Nemhauser, G. L. (1978b). Optimality conditions for a dynamic traffic assignment model. Transportation Science, 12(3), 200-207.
[49] Michalopoulos, P. G., Yi, P., & Lin, J. K. (1984). Analysis of interrupted traffic flow by finite difference methods. Transpn. Res. B, 18, 409-421.
[50] Michalopoulos, P. G., Yi, P., Beskos, D. E. (1991).Continuum modeling of traffic dynamics. In: Proceedings of the Second International Conference of Applications of advanced Technology in Transportation Enginering (pp.36-40). Minneapolis.
[51] Michalopoulos, P. G., Yi, P., & Lyrintzis, A. S. (1993). Development of an improved high order continuum traffic flow model. Transportation Research Record, 1365, 125-132.
[52] Nakamura, S. (1993). Applied Numerical Methods in C. Prentice-Hall.
[53] Naurney A. (1993). Network Economics: A Variational Inequality Approach. Kluwer Academic Publishs, Norwell, MA.
[54] Oppenheim, A. V., Willsky, A. S. ,& Nawab, S. H. (1997). Signals & Systems (2nd ed.). Prentice-Hall .
[55] Papageorgiou, M. (1983). Applications of automatic control concepts to traffic flow modeling and control. In: Calakrishnan, A. V., Thoma, M. (Eds.), Lecture Notes in Control and Information Sciences (pp.4-41). Berlin: Springer.
[56] Papageorgiou, M. (1990). Dynamic modeling, assignment, and route guidance in traffic networks. Transpn. Res. B, 24(6), 471-495.
[57] Payne, H. J. (1971). Models of freeway traffic and control. In: Bekey, G. A.(Ed.), Mathematical Models of Public Systems (vol. 1,pp.51-61). Simulation Councils Proc.
[58] Payne, H. J. (1979). FREFLO: A macroscopic simulation model of freeway traffic. Transpn. Res. Rec., 772, 68-75.
[59] Ran, B. & Shimazaki, T. (1989a). A general model and algorithm for the dynamic traffic assignment problem. Proceedings of the 5th World Conference on Transport Research, Yokohama, Japan.
[60] Ran, B & Shimazaki, T. (1989b). Dynamic user equilibrium traffic assignment for congested transportation networks. Presented at the 5th World Conference on Transport Research, Yokohama, Japan.
[61] Ran, B., Boyce, D. E. & LeBlanc L.J. (1992). Dynamic user-optimal route choice models based on stochastic route travel times. Presented at the Second International Capri Seminar on Urban Traffic Networks, Capri, Italy.
[62] Ran, B. (1993). Dynamic transportation network models for advanced traveler information systems. PhD thesis, University of Illinois, Chicago,IL.
[63] Ran, B., Boyce, D. E. & LeBlanc L.J. (1993). A new class of instantaneous dynamic user-optimal traffic assignment models. Operations Research, 41, 192-202.
[64] Ran, B. & Boyce, D. E. (1994). Dynamic urban transportation network models — theory and implications for intelligent vehicle-highway systems. No. 417 Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Heidelberg.
[65] Ran, B. & Boyce, D. E. (1996). Modeling Dynamic Transportation Networks/An Intelligent Transportation System Oriented Approach.Heidelberg: Springer-Verlag.
[66] Smith, M. J. (1979). Traffic control and route-choice; A simple example. Transpn. Res.B, 13, 289-294.
[67] Smith, M. J., May. A. D., Wisten, M. B. Milne, D. S., Van Vliet, D. & Ghali, M. O. (1994). A comparison of the network effect of four road-user charging systems. Transportation Engineering and Control, 25(5), 311-315.
[68] Thomas, J. W. (1995). Numerical Partial Differential Equations: Finite Difference Methods. New York: Springer-Verlag.
[69] Thomas, J. W. (1999). Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations. New York: Springer-Verlag.
[70] Van Vuren, T. & Van Vliet, D. (1992). Route choice and signal control. Institute of Transportation Studies, Avebury.
[71] Watling, D. P. (1993). Urban traffic network models and dynamic driver information systems. Transport Reviews, 14, 219-246.
[72] Whitham, G. B. (1974). Linear and Nonlinear Waves. New York: Wiley.
[73] Wie, B. W. (1989). Dynamic system optimal traffic assignment on congested multidestination networks. Presented at the 5th World Conference on Transport Research, Yokohama, Japan.
[74] Wie, B. W. (1993). A differential game model of Nash equilibrium on a congested traffic network. Network, 23, 557-565.
[75] Wie, B. W., Tobin R. L. & Friesz T. L. (1995). A discrete time, nested cost operator approach to the dynamic network user equilibrium problem. Transportation Science, 29, 79-92.
[76] Zhang, H. M. (1998). A theory of nonequilibrium traffic flow. Transpn. Res. B, 32, 485-498.
[77] Zhang, Y. & L. E. Owen. (1998). An advanced traffic simulation approach for modeling ITS application. 1998 IEEE International Conference on Systems, Man, and Cybernetics, 4, 3228-3233.
[78] 周志忠,「車流波動方程式數值解法之研究」,國立交通大學,交通運輸研究所碩士論文,民國八十六年六月。
[79] 卓訓榮、張瑞玲、伍恩琳,「高速公路二車道瓶頸路段車流模擬之初步研究」,運輸學刊,第十三卷,第一期,49~68頁,民國九十年三月。
[80] 盧金辰,「動態車流方程式數值解之研究-以LWR及其包含擴散項之延伸模式為例」,國立交通大學,運輸工程與管理研究所碩士論文,民國八十九年六月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top