(3.220.231.235) 您好!臺灣時間:2021/03/09 06:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許哲彰
研究生(外文):Che-Chang Hsu
論文名稱:行為反應下航機誤點延滯擴散之研究
論文名稱(外文):The Study on Flight-Delay Propagation, Allowing for Behavioural Response
指導教授:許巧鶯許巧鶯引用關係
指導教授(外文):Chaug-Ing Hsu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:運輸科技與管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:87
中文關鍵詞:行為反應航機誤點誤點擴散時刻表緩衝時間準時機門誤點
外文關鍵詞:Behavioral ResponseFlight-DelayDelay Propagationscheduleslack timepunctualitygatedelay
相關次數:
  • 被引用被引用:3
  • 點閱點閱:288
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
依照公開時刻表營運之航空公司,若時刻表中任一班次發生延誤,則下一班次將可能被迫發生延誤,造成誤點延滯之擴散。本研究應用機率與統計理論構建航機誤點延滯擴散模式,並加入行為反應之考量。以長期之觀點,行為反應乃起因於營運人員對於時刻表緩衝時間之預期,若在班表排程中加入緩衝時間,雖能提昇班表之準點績效,但營運人員因預期班次間有足夠緩衝時間(時間餘裕),使得作業之效率降低,或造成不必要之延滯,亦將降低航空公司潛在之獲利機會。而以即時之觀點,行為反應乃由於實際營運中營運人員得知班機是否發生延滯而引起,若班機發生誤點之情形,營運人員將有可能加快作業之速度,盡量讓誤點之時間縮短。
本研究以隨機變數描述各班次航機之抵達時間、地面作業時間、與機門使用時間。依推擠性誤點可能發生之情況,分為三個部分探討:第一為同架航機、不同班次間之誤點延滯擴散,由於班次間使用同架航機,故下一班機是否準時起飛,直接受上一班機何時抵達機場,並完成地面作業時間之影響。第二為在機門之使用過程中,不同班機間之誤點延滯擴散,由於前後使用機門之飛機,不一定是同一架,故下一班機開始使用機門之時間,除了受到上一班機完成機門使用之時間影響外,亦受到本身航機抵達機門之時間影響,須同時考慮,本研究引入聯合機率分配之觀念處理此一問題。第三為轉機過程中,不同航機、不同班次間之誤點延滯擴散,而接駁班機何時能起飛,除受到欲轉機之旅客/行李登上接駁機之時間影響外,亦受到接駁機本身抵達機門時間之影響,亦可以聯合機率分配之觀念同時考慮。本研究構建之模式可推導出:下一班次離站準/誤點之機率、離站時間之機率密度函式、平均離站誤點時間、兩班次間平均之停等(浪費)時間等。
最後,本研究以C航空公司入境中正機場當天隨即飛往香港之穿越性班機資料作為樣本,檢定班機抵達誤點時間、地面作業延誤時間之機率密度分配,推算班機抵達與地面作業總誤點時間之機率密度分配,校估不同班表班距下之行為反應參數,並求得航機準時離站之機率、班機完成地面作業後至起飛前之平均等待(停等)時間、班機平均起飛誤點時間等重要指標,這些指標,將可作為航空公司分析班機誤點及擬定班表之參考依據。
ABSTRACT
For airlines operating according to published time tables, whenever one flight is delayed, the following flights may be forced to be delayed accordingly, and consequently, results in flight-delay propagation. This study applies probability and statistical methods to model flight delay propagation effects, allowing for behavioral response. From a long-term view point, behavioral response is due to airlines’ estimate of the slack of the time table. Though putting more slack into the time table may improve flight punctuality, it reduces operating efficiency and entails unnecessary waits which cuts the profit potential of airlines. From the instant point of view, behavioral response is also brought upon by actual operators at that instance knowing the flight is delayed. In case of delayed flight, operators can increase their processing speed to minimize the delay.
According to characteristics of flight delay propagation, we investigate the following three scenarios in the flight delay propagation model constructed in this research. The first is the flight delay propagation of the same airplane operating the consecutive flights. Because the two flights using the same airplane, the punctuality of the second flight is directly affected by the time the first flight arrives and the time it takes to unload passengers from the first flight and to load passengers for the second flight. The second is the flight delay propagation between different flights and different airplanes when they share the same gate. The punctuality of gate-use start time for the second flight directly depends on when the first flight finishes its gate use and when the airplane of the second flight arrives at the gate. The third scenario is flight delay propagation between different flights and different airplanes when transfers of connecting passengers and luggage are involved. This scenario is similar to the second case.
At last, in this research, we use the data of the Airline C shuttle flights serving between Taipei and Hong Kong. In the case study, we first compute the probability distributions of time delays due to flight arrivals and time delays due to ground operations, and then derive the probability distribution of total time delay accounting for both factors. Second, we calibrate the value of the parameter representing the behavioral response due to flight schedules and gaps between flights. Finally, we calculate the probability of flights leaving gate on time, the average wait time of a flight from finishing ground operation to actual taking off, and average delay of the flight take-off time. The results of the study can be valuable references on both estimating flight delays and scheduling flights and slack time for airlines.
中文摘要 i
英文摘要 ii
目 錄 iii
表目錄 v
圖目錄 vi
符號說明 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究範圍 6
1.4 研究方法與架構 6
第二章 文獻回顧 11
2.1 行為反應之相關文獻 11
2.2 誤點延滯擴散與控制方面之相關文獻 15
2.3 時刻表之制定與規劃方面之相關文獻 17
2.4 轉運方面之相關文獻 17
2.5 綜合評析 18
第三章 班機推擠性誤點延滯之分析 19
3.1 同一架飛機、不同班次間之推擠性誤點 19
3.1.1 參變數定義 19
3.1.2 即時之推擠性誤點延滯 20
3.1.3 長期之平均推擠性誤點延滯 24
3.2 不同飛機、不同班次間之推擠性誤點延滯 29
3.2.1 參變數定義 31
3.2.2 即時之推擠性誤點延滯 31
3.2.3 長期之平均推擠性誤點延滯 33
3.3 不同飛機、不同班次間之推擠性誤點延滯 45
3.3.1 參變數定義 46
3.3.2 即時之班機推擠性誤點延滯 50
3.3.3 長期之平均班機推擠性誤點延滯 54
第四章 實例分析 62
第五章 結論與建議 82
5.1 結論 82
5.2 建議 84
參考文獻 85
參考文獻
1. 汪進財,盧清泉,臨時飛航事件班機調度因應策略之研究,運輸計畫季刊,第25卷,第二期,頁255-288,民國85年。
2. 胡思繼,「區段內列車晚點傳播理論之研究」,北方交通大學,北京,中國,1996。
3. 張有恆,林正章,傅耀南,機場容量推估之研究-以松山機場為例,第七屆校際運輸學術聯誼研討會,頁91-112,民國87年。
4. 鍾惠存,「航空公司班機誤點延滯擴散與控制之研究」,國立交通大學運輸工程管理學系碩士論文,民國89年。
5. Adenso-Diaz, B., Gonzalez, M. O. and Gonzalez-Torre, P. (1999), “On-line timetable re-scheduling in regional train service,” Transportation Research, Vol. 33B, No 6, pp. 387-398.
6. Abkowitz, M., Eiger, A. and Engelstein, I. (1986), “Optimal Control of Headway Variation on Transit Routes,” Journal of Advanced Transportation, Vol. 20, pp. 73-88.
7. Anis, Z. and Odoni, A. (1993), “Please Hold: Modeling Airport Delays in a Network,” Paper Presented at the TIMS/ORSA Joint National Meeting, Chicago, May.
8. Bookbinder, J. H. and Ahlin, F. J. (1990), “Synchronized Scheduling and Random Delays in Urban Transit,” European Journal of Operational Research, Vol. 48, No. 2, pp. 204-218.
9. Bookbinder, J. H. and Desilets, A. (1992), “Transfer Optimization in a Transit Network,” Transportation Science, Vol. 26, No. 2, pp. 106-118.
10. Carey, M. (1992), “Reliability of interconnected scheduled services, with Resequencing Allowed,” Research Report, Faculty of Business and Management, University of Ulster, and Department of Statistics, University of Oxford.
11. Carey, M. (1994), “Reliability of interconnected scheduled services,” European Journal of Operation Research 79(1), pp. 51-72.
12. Carey, M. (1996), “Simulating Train Performance and Reliability at Busy Complex Station,” Research Report. Faculty of Business and Management, University of Ulster.
13. Carey, M. (1998), “Optimal scheduled times, allowing for behavioral response,” Transportation Research, Vol. 32B, No.5, pp. 329-324.
14. Carey, M. and Kwiecinski, A. (1994), “Stochastic Approximation to the Effects of Headways on Knock-on Delays of Trains,” Transportation Research, 28B, No. 4, pp. 251-267.
15. Carey, M. and Seckington, P. (1992), “Generating and Revising Timetables: a Program for Exploring Reliability, Time and Cost Trade-offs,” Research Report. Faculty of Business and Management, University of Ulster.
16. Chen, B. and Harker, P. T. (1990), “Two Moments Estimation of the Delay on Single-Track Rail Lines with Scheduled Traffic,” Transportation Science, Vol. 24, No. 4, pp. 261-275.
17. Hall, R. W. (1985), “Vehicle Scheduling at a Transportation Terminal with Random Delays En Route,” Transportation Science, Vol. 19, No. 3, pp. 308-320.
18. Higgins, A. and Kozan, E. (1998), “Modeling Train Delays in Urban Network,” Transportation Science, Vol. 32, No. 4, pp. 346-357.
19. Jenkins, I. A. (1976), “A Comparison of Several Techniques for Bus Routes,” Research Report, No.14, TORG, University of Newcastle upon Tyne.
20. Jarrah, A. I., Yu, G., Krishnamurthy, N. and Rakshit, A. (1993), “A Decision Support Framework for Airline Flight Cancellations and Delays,” Transportation Science, Vol. 27, No. 3, pp. 266-280.
21. Newell, G. F. (1977), “Unstable Brownian Motion of a Bus Trip,” Statistical Mechanics and Statistical Methods in Theory and Application, pp. 645-667.
22. Powell, W. B. and Sheffi, Y. (1983), “A Probabilistic Model of Bus Route Performance,” Transportation Science, Vol. 17, No. 4, pp. 376-404.
23. Talley, W. K., and, Becker, A. J. (1987), “On-Time Performance and the Exponential Probability Distribution,” Transportation Research Record, 1108, pp. 22-26.
24. Trietsch, D. (1993), “Scheduling Flights at Hub Airports,” Transportation Research, 27B, No. 2, pp. 133-150.
25. Teodorovic, D. and Guberinic, S. (1984), “Optimal Dispatching Strategy on an airline network after a schedule perturbation,” European Journal of Operational Research, Vol. 15, No. 2, pp. 178-182.
26. Wu, C. L. and Caves, R. E. (2000), “Aircraft operational costs and turnaround efficiency at airports,” Journal of Air Transport Management 6 , pp. 201-208.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔