跳到主要內容

臺灣博碩士論文加值系統

(54.91.62.236) 您好!臺灣時間:2022/01/18 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林巧茹
研究生(外文):Chiao-Ju Lin
論文名稱:矽化鎳接觸淺接面二極體之研製
論文名稱(外文):Formation and Characterization of NiSi Contacted Shallow Juntions
指導教授:陳茂傑
指導教授(外文):Mao-Chieh Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:41
中文關鍵詞:矽化鎳淺接面
外文關鍵詞:NiSishallow junction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討以離子植入矽化鎳(NiSi)的技術來製作NiSi/p+n以及NiSi/n+p淺接面二極體。經適當能量的BF2+離子佈植使得NiSi/n-Si界面處具有較高硼(B)和氟(F)離子濃度的矽化鎳薄膜可減緩薄膜結塊的發生,高溫穩定性可達到750℃,此乃由於聚集在矽化鎳晶界的硼離子以及矽化鎳薄膜中的氟離子效應有效阻礙了結塊的發生。較高的BF2+離子佈植劑量在接面處形成較高的參雜濃度,可以得到電特性較佳的NiSi/p+n淺接面二極體。其中,以35keV能量將5×1015cm-2劑量的BF2+離子植入NiSi(310Å)/n-Si,並在氮氣爐管中作650℃的退火處理30分鐘所得到的NiSi/p+n淺接面二極體,其接面深度(自初始矽基板高度算起) 約為87nm,反偏壓(5伏)漏電流密度約為1nA/cm2,正向理想參數為1.01。此接面二極體之反偏壓電流的活化能約為1.07eV,顯示反偏壓電流的主要成份為擴散電流(diffusion current)。對反偏壓電流成分的分析結果顯示,就面積為1×10-4cm2的接面二極體而言,漏電主要來自二極體的周邊,而非底部。
在NiSi/n+p接面二極體方面,以P+離子植入並經後續退火所得到的NiSi/n+p接面二極體,具有優於以As+離子植入所製得之接面二極體的電特性。其中,以35keV能量將5×1015cm-2劑量的P+離子植入NiSi(760Å)/p-Si,並在氮氣爐管中作600℃的退火處理30分鐘所得到的NiSi/n+p接面二極體,其反偏壓電流密度約為60 nA/cm2,正向理想參數約為1.20,接面深度(自初始矽基板高度算起)約為80nm。此接面二極體之反偏壓電流在低溫(40~100℃)之活化能約為0.6eV,顯示反偏壓電流的主要成份為產生電流(generation current );在高溫(120~200℃)之活化能約為0.94eV,顯示其電流成份含有擴散電流和產生電流。

This thesis studies the formation, using the technique of implant into/through silicide (ITS), and the characterization of NiSi/p+n and NiSi/n+p shallow junctions. It is found that a NiSi film which is implanted with BF2+ at a proper energy and dose and has high concentration of dopant at the NiSi/Si interface will have a better resistance to the NiSi film agglomeration up to a temperature of about 750℃ due to the segregation of dopant atom at the NiSi grain boundaries and the effect of fluorine atom in the NiSi film. As for the electrical characteristics of the NiSi/p+n junction diodes, higher dose implantation results in better junction characteristics because of higher dopant concentration at the junction. For the p+n junction diodes fabricated using the ITS scheme, BF2+ implantation at 35keV to a dose of 5×1015cm-2 into the NiSi(310Å)/n-Si structure, followed by a furnace annealing at 650℃ for 30min resulted in NiSi/p+n shallow junctions with a junction depth of about 87nm, a reverse bias leakage current density of about 1nA/cm2 and a forward ideality factor of nearly unity. It is found that diffusion current is the predominant component of the reverse bias leakage current, which is mainly contributed by the peripheral leakage for the NiSi/p+n junctions with a size of 1×10-4cm2.
The NiSi film implanted with As+ and P+, separately, at higher energy and to a larger dose resulted in worse resistance to the agglomeration of Ni-silicide and NiSi2 was formed at lower annealing temperature, owing to the increase in surface energy of NiSi film. The NiSi/n+p junction diodes with a reverse bias leakage current about 60 nA/cm-2 and a forward ideality factor of about 1.20 were obtained by P+ implantation at 35 keV to a dose of 5×1015 cm-2 into the structure of NiSi(760Å)/p-Si, followed by a furnace annealing at 600℃ for 30min. The junction depth is determined to be about 80nm. It is found that the generation current is the predominant component of the reverse bias leakage current of the NiSi/n+p shallow junction at temperatures below 100℃ presumably because the recoiled Ni atom in and/or near the n+p junction plays a role of generation center.

Contents
Abstract (Chinese)…………………………………………………………………………i
Abstract (English)…………………………………………………………...…………….ii
Acknowledge………………………………………………………………………..iii
Contents………………………………………………………………………………..…iv
Table & Figure Captions………………………………………………………………..vi
Chapter 1 Introduction………………………………………………………….1
1.1 Overview……………………………………………………………………..…1
1.2 Salicide Technology…………………………………………………………….2
1.3 Selection of Salicide Material — Why NiSi?……………………………………3
1.4 Thesis Organization…………………………………………………………….5
Chapter 2 Formation and Characterization of NiSi/p+n Shallow Junctions………………………………………………….…….…6
2.1 Introduction…………………………………………………………….……..…6
2.2 Formation of NiSi/p+n Shallow Junctions Using ITS Technology…….……..…8
2.3 Characterization of NiSi/p+n Shallow Junctions….……………………………10
2.3.1 Junction Depth Determination…….……………………………………10
A. Film Thickness Determination by TEM Cross Sectional
View Inspection. ………………………………………………………10
B. TRIM Simulation Analysis…………………………………..………11
C. SRP Measurements………………………………………………..…12
2.3.2 Material Analysis…………………………………………………...…..13
A. EDX Analysis…………………………………………………..……13
B. AES Analysis……………………………………………………..….14
C. Sheet Resistance Measurement………………………………………14
D. SEM Inspection………………………………………………………15
E. XRD Analysis……………………………………………………...…17
2.3.3 Electrical Measurements……………………………………………..…17
A. Reverse Leakage Current Density……………………………………18
B. Ideality Factor and Forward Characteristics…………………………19
C. Activation Energy Measurement……………………………….…….20
D. Area and Periphery Leakage Current…………………………..…….22
2.4 Summary………………………………………………………………….……23
Chapter 3 Formation and Characterization of NiSi/n+p Shallow Junctions……………………………………………..…………..25
3.1 Introduction…………………………………………………………………….25
3.2 Formation of NiSi/n+p Shallow Junctions Using ITS Technology…………….25
3.3 Characterization of NiSi/n+p Shallow Junctions………………………………27
3.3.1 Junction Depth Determination…………………………………….……27
A. Film Thickness Determination by TEM Cross Sectional
View Inspection……………………………………………………….27
B. TRIM Simulation Analysis……………………………………….…28
C. SRP Measurements……………………………………….…………28
3.3.2 Material Analysis………………………………………………………30
A. AES Analysis………………………………………………..………30
B. Sheet Resistance Measurement………………………………………30
C. SEM Inspection………………………………………………………31
D. XRD Analysis………………………………………………….….…33
3.3.3 Electrical Measurements……………………………………………..…34
A. Current-Voltage Characteristics……………………………...………34
B. Activation Energy Measurement……………………………..………35
3.4 Summary…………………………………………………………….…………36
Chapter 4 Conclusions and Suggestions for Future Work……………39
4.1 Conclusions of This Thesis Study……………………………………………..39
4.2 Suggestions for Future Work………………………………………………..…41
References

[1] K. K. Ng and W.T. Lynch, “ Analysis of the gate-voltage dependent series resistance of MOSFETs,” IEEE Trans. Electron Devices ED-33, 965 (1986).
[2] K. K. Ng and W. T. Lynch, “The impact of intrinsic series resistance on MOSFET scaling,” IEEE Trans. Electron Devices ED-34, 503 (1987).
[3] T. Shibata, K. Hieda, M. Sato, M. Konaka, R. L. M. Dang, and H. Iizuka, “An optimally designed process for submicron MOSFETs,” IEDM Tech. Digest (1981), p. 647.
[4] S. P. Murarka, Silicides for VLSI Applications, Bell Telephone Laboratories, Academic Press (1983).
[5] H. Jeon, C. A. Sukow, J.W. Honeycutt, G. A. Rozgonyi, and R. J. Nemanich, “Morphology and phase stability of TiSi2 on Si,” Appl. Phys. Lett. 71, 4269 (1992).
[6] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, “New silicidation technology with Ni(Pt) alloy for MOSFETs,” IEEE Electron Device Lett. EDL-22, 568 (2001).
[7] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 an CoSi2,” IEEE Trans. Electron Devices ED-38, 262 (1991).
[8] Y. Matsubara, T. Horiuchi, and K. Okumura, “Activation energy for the C49-to-C54 phase transition of polycrystalline TiSi2 films with arsenic impurities,” Appl. Phys. Lett. 62, 2634 (1993).
[9] S. Motakef, J. M. E. Harper, F. M. d’Heurle, T. A. Gallo, and N. Herbots, “Stability of C49 and C54 phases of TiSi2 under ion bombardment,” J. Appl. Phys. 70, 2660 (1991).
[10] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiky, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of resistance behavior in Ti- and Ni-salicided polysilicon films,” IEEE Trans. Electron Devices ED-41, 2305 (1994).
[11] F. Deng, R.A. Johnson, P.M. Asbeck, S.S. Lau, W.B. Dubbelday, T. Hsiao, and J. Woo, "Salicidation process using NiSi and its device applications. Part II," J. Appl. Phys. 81, 8047(1997).
[12] V. Probst, H. Schaber, P. Lippens, L. Van Den Hove, and R. De Keersmaecker, “Limitations of TiSi2 as a source for dopant diffusion,” Appl. Phys. Lett. 52, 1803 (1988).
[13] K. Maex, R. F. De Keersmaecker, G. Ghosh, L. Delaey, and V. Probst, “Degradation of doped Si regions contacted with transition-metal silicides due to metal-dopant compound formation,” J. Appl. Phys. 66, 5327(1989).
[14] V. Probst, H. Schaber, A. Mitwalsky, H. Kabza, B. Hoffmann, K. Maex, and L. Van den Hove, “Metal-dopant-compound formation in TiSi and TaSi2: impact on dopant diffusion and contact resistance,” J. Appl. Phys. 70, 693 (1991).
[15] Q. Xiang, C. Woo, E. Paton, J. Foster, B. Yu and M. R. Lin, “Deep sub-100nm CMOS with ultra low gate sheet resistance by NiSi,” Symposium on VLSI Technology Digest (2000), p. 76.
[16] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, A. T. S. Wee, and L. Chan, “Improved NiSi salicide Process using presilicide N2+ implant for MOSFETs,” IEEE Electron Device Lett. EDL-21, 566 (2000).
[17] J. Y. Sun, Y. Taur, R. H. Dennard, and S. P. Klepner, “Submicrometer-channel CMOS for low temperature operation,” IEEE Trans. Electron Devices ED-34, 19 ( 1987).
[18] C. Y. Ting, F. M. d’Heurle, S. S. Iyer, and P. M. Fryer, “High temperature process limitations on TiSi2,” J. Electrochem. Soc. 133, 2621(1986).
[19] J. F. Chen and L. J. Chen, "Thermal stability of Ti thin films on polycrystalline and amorphous silicon,” Thin Solid Films 293, 34 (1997).
[20] S. A. Jang, T. K. Kim, I. S. Yeo, H. S. Kim, and S. K. Lee, “Effects of thermal processes after silicidation on the performance of TiSi/sub 2//polysilicon gate device,” IEEE Trans. Electron Devices ED-46, 2353 (1999).
[21] F. La Via and E. Rimini, “Electrical characterization of ultra-shallow junctions formed by diffusion from a CoSi2 layer,” IEEE Trans. Electron Devices ED-44, 526 (1997).
[22] H. D. Lee, “ Characterization of shallow silicided junctions for sub-quarter micron ULSI technology-extraction of silicidation induced Schottky contact area,” IEEE Trans. Electron Devices ED-47, 762 (2000).
[23] A. Chatterjee, M. Rodder, and I. C. Chen, “A transistor performance figure-of-merit including the effect of gate resistance and its application to scaling to sub-0.25-μm CMOS logic technologies,” IEEE Trans. Electron Devices ED-45, 1246 (1998).
[24] M. Minondo, J. Boussey, and G. Kamarinos, “P+/N shallow junctions formation on Ge+ preamorphised silicon substrate,” IEE Colloquium on Advanced MOS and Bipolar Devices (1994), London (UK), p. 101.
[25] C.M. Lin, A.J. Steckl and T.P. Chow, "Rapid thermal annealing of FIB-implanted Ga shallow impurity profiles," Materials Res. Soc. Proc. 101, 495 (1988).
[26] M. C. Ozturk, J. J. Wortman, C. M. Osburn, A. Ajmera, G. A. Rozgonyi, E. Frey, W.-K. Chu, and C. Lee, “Optimization of the germanium preamorphization conditions for shallow-junction formation,” IEEE Trans. Electron Devices ED-35, 659 (1988).
[27] S. Talwar, G. Verma, and K. H. Weiner, 12th International Conference on Ion Implantation Technology Proceedings (1998), p. 1171.
[28] K. I. Goto, J. Matsuo, Y. Tada, T. Tanaka, Y. Momiyama, T. Sugii, and I. Yamada, IEDM Tech. Digest (1997), p. 471 .
[29] E. C. Jones, N. W. Cheung, J. Shao, and A. S. Denholm, 11th International Conference on Ion Implantation Technology (1997), p. 745.
[30] E. Ishida and L. Larson, University/Gonvernment/Industry Microelectronics Symposium., Proceedings of the Eleventh Biennial (1995), p. 105.
[31] P. G. Garey, K. H. Weiner, and T. W. Sigmon, IEEE Electron Device Letters EDL-9, 542 (1988).
[32] M. A. Foad, R. Webb, R. Smith, E. Jones, A. Al-Bayata, M. Lee, V. Agrawal, S. Banerjee, J. Matsuo, and I. Yamada, 12th International Conference on Ion Implantation Technology Proceedings (1998), p. 106.
[33] K. Goto, J. Mastuo, T. Sugii, H. Minakata, I. Yamada, and T. Hisatsugu, IEDM Tech. Digest (1996), p.435.
[34] B. S. Chen, “Self-aligned cobalt silicide technology for ULSI applications,” Ph. D Thesis, National Chiao Tung University (1994).
[35] F. C. Shone, K. C. Sarawat, and J. D. Plummer, “Formation of 0.1-μm n+/p and p+n junction by doped silicide technology,” IEDM Tech. Dig. (1985), p. 407.
[36] R. Liu, D. S. Williams, and W. T. Lynch, “A study of the leakage mechanisms of silicided n+/p junctions,” J. Appl. Phys. 63, 1990 (1988).
[37] F. La Via, V. Privitera, S. Lombardo, C. Spinella, V. Raineri, E. Rimini, P. Baeri, and G. Ferla, “Precipitation of arsenic diffused into silicon from a TiSi2 source,” J. Appl. Phys. 69, 726 (1991).
[38] F. La Via, V. Privitera, C. Spinella, and E. Rimini, “Stress-induced precipitation of dopants diffused into Si from TiSi2 and CoSi2 implanted layers,” Semicond. Sci. Technol. 8, 1196 (1993).
[39] L. Van Den Hove, K. Maex, L. Hobbsm P. Lippens, R. De Keersmaecker, V. Probst, and H. Schaeber, “Comparison between CoSi2 and TiSi2 as dopant source for shallow silicided junction formation,” Appl. Surf. Sci. 38, 430 (1989).
[40] F. La Via, C. Spinella, and E. Rimini, “Arsenic and boron diffusion in silicon from implanted cobalt silicide layers,” Semicond. Sci. Technol. 10, 1362 (1995).
[41] R. Angelucci, S. Solmi, A.Armigliato, S. Guerri, M.Merli, A. Poggi, and R. Canteri, “Boron ion implantation through Mo and Mo silicide layers for shallow junction formation,” J. Appl. Phys. 69, 3962 (1991).
[42] C.H. Cheng, “Formation of NiSi contacted shallow junction diodes by implant through silicide or metal,” Master Thesis, National Chiao Tung University (2001).
[43] Zhang M, Zeng XC, Chu PK, Scholz R, and Lin CL., “Nickel precipitation at nanocavities in separation by implantation of oxygen,” J. Vac. Sci. Technol. A-Vac. Surf. Films 18, 2249 (2000).
[44] S. S. Lau, and N. W. Cheung, Thin Solid Films 71, 117 (1980).
[45] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, (1981), p. 88.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top