跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 10:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張原熏
研究生(外文):Yuan-Hsun Chang
論文名稱:結合準分子雷射與金屬誘導方式製作低溫複晶矽薄膜電晶體之研究
論文名稱(外文):Investigation on Metal Induced Lateral Crystallized and Post Laser Annealed Low-Temperature Polycrystalline Silicon Thin Film Transistors
指導教授:鄭晃忠鄭晃忠引用關係
指導教授(外文):Huang-Chung Cheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:複晶矽薄膜電晶體鎳金屬矽化物誘導側向結晶準分子雷射載子移動率
相關次數:
  • 被引用被引用:0
  • 點閱點閱:471
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:2
利用鎳金屬矽化物誘導側向結晶的方式來製作高效能低溫複晶矽薄膜電晶體已廣泛地被討論。但目前相關的論文均只是在討論鎳金屬矽化物誘導側向結晶的現象對於複晶矽薄膜電晶體特性之影響,而從實驗中我們發現元件尺寸、主動層的厚度乃至於鎳金屬圖樣的大小以及鎳金屬沉積區域距離元件通道的遠近與位置均會影響到複晶矽薄膜電晶體的特性。另外,我們也發現,結合準分子雷射與金屬誘導兩種方式,能更有效的改善單純以金屬誘導方式製作之複晶矽薄膜的結晶性,進而製作高性能的低溫複晶矽薄膜電晶體。在報告中,我們將就這些因素進行討論,並且對於實驗結果,提出合理的模型來加以解釋。
我們首先就鎳金屬矽化物催化側向結晶後的複晶矽薄膜做材料上分析。從顯微鏡觀察得知,非晶矽薄膜的厚度以及金屬沉積區域圖樣的形狀大小會影響鎳金屬矽化物催化側向結晶的速率;從微拉曼光譜分析上發現非晶矽薄膜的厚度、鎳金屬沉積區域圖樣的形狀大小、以及距離鎳金屬沉積區域的遠近皆會影響結晶後複晶矽薄膜的結晶性;而從穿透式電子顯微鏡影像亦發現隨著圈選區域的縮小,複晶矽薄膜的結晶性將有明顯增加,這意味著鎳金屬矽化物催化側向結晶後的複晶矽薄膜在局部的區域具有極佳的結晶性;而從縱剖面穿透式電子顯微鏡影像發現不同厚度的非晶矽薄膜厚度將影響晶粒成長的方向以及結晶後薄膜的微結構;此外,從Secco etch後複晶矽薄膜的掃描式電子顯微鏡影像中亦可發現複晶矽薄膜中晶粒間呈現低角度的晶界,且複晶矽薄膜中亦殘存些許非晶矽相,隨著距鎳金屬沉積區域越遠,非晶矽相的分布越趨增加。而從掃描式電子顯微鏡的影像中發現,當我們結合準分子雷射技術,原本存在於中的低角度晶界將相互融合,並利用大範圍的側向成長的機制,使得晶粒的大小可以達到至少10um。最後,我們將提出合理的模型解釋這些現象,並提出以鎳金屬矽化物催化側向結晶的機制。
接著我們再以材料分析上的結果作為依據,製作出具有高性能、高均勻性之鎳金屬誘導低溫複晶矽薄膜電晶體,N型通道低溫複晶矽薄膜電晶體之載子移動率可達80cm2/V*s以上,而若再結合準分子雷射處理,低溫複晶矽薄膜電晶體的載子移動率將可達到250cm2/V*s以上。

High-performance low-temperature polycrystalline silicon thin film transistors fabricated by metal induced lateral crystallization (MILC) method have been widely studied. But, all related papers just discuss the effects of MILC method on the performance of poly-Si TFTs. However, from experiments we find that the dimension of device, the active layer thickness, the dimension of nickel pattern, the distance between channel region and nickel pattern would also affect the performance of poly-Si TFTs. Additionally, MILC with post excimer laser annealing (ELA) called L-MILC method will also be investigated. In this report, these effects will be discussed and a reasonable model will be proposed to explain them.
First, we stepped in the material analyses of the MILC poly-Si thin films. According to the optical microscopic inspection, we find that the thickness of a-Si thin film and the dimension of the nickel pattern would affect the crystallization rate of MILC. From the micro-Raman spectrographs, we find that the thickness of a-Si thin film, dimension of nickel pattern and the distance from nickel pattern also influence the crystallinity of poly-Si thin film. On the other hand, from the TEM analysis, the crystallinity would obviously increase as the selected region shrunk. It means that MILC poly-Si thin film has excellent crystallinity in the local areas. Moreover, from cross section TEM image, it is obviously that the thickness of a-Si thin film would affect the orientation of grain growth and the micro structure of the poly-Si tihn film. We also find that low-angle grain boundaries exhibited between grains and few amorphous residues remaining in the poly-Si thin film from the SEM image after Secco etching. In addition, amorphous residues would increase with the distance from the nickel pattern. When we introduce L-MILC method, such misoriented grains are merged and the defects can be eliminated. As the occurrence of large-scale vertical regrowth, giant grain sizes are achieved at least 10um from SEM graphs.
Then, high-performance and high-uniformity poly-Si TFTs are fabricated according to the results of the material analyses. Mobility of the n-channel MILC TFTs can attain to 80 cm2/V*s. For TFTs with post excimer laser annealing, the mobility would attain to above 250 cm2/V*s.

摘 要…………………………………………………………………….....................i
ABSTRACT…………………………………………………………………………..iii
謝 誌…………………………………………………………………………………v
TABLE LISTS………………………………………………………………...........…ix
FIGURE CAPTIONS………………………………………………………………….x
CHAPTER 1: INTRODUCTION
1.1 Overview of Low-Temperature Polycrystalline Silicon Thin-Film Transistors (LTPS TFT)…………………………………………………..1
1.2 Solid Phase Crystallization of Amorphous Silicon Silicon………………2
1.3 Crystallization by Excimer Annealing…………………………………...3
1.4 Metal Induced Lateral Crystallization Crystallization…………………...4
1.5 Thesis Outline……………………………………………………………5
CHAPTER 2: MATERIAL AND ELECTRICAL CHARACTERISTICS OF METAL INDUCED LATERAL CRYSTALLIZED POLYCRYSTALLINE SILICON THIN FILM TRANSISTORS
2.1 Material characteristics of Metal Induced Lateral Crystallized Amorphous Silicon Thin Films
2.1.1 Introduction……………………………………………………………...7
2.1.2 Material Analyses Process Flow of Metal Induced Lateral Crystallized Amorphous Silicon Thin Films………………………………………….9
2.1.3 Material Analyses of Metal Induced Lateral Crystallized Amorphous Silicon Thin Films
2.1.3.1 Stucture of nickel disilicide………………………………….….11
2.1.3.2 Mechanism of MILC………………………………………........11
2.1.3.3 Analyses of optical microscopic (OM) images………………....12
2.1.3.4 The Relevance among Thickness Effect, Location of Nickel pattern and crystallization rate of MILC……………………….13
2.1.3.5 Analyses of Micro Raman Spectrograph…………………….....14
2.1.3.6 Analyses of Transmission Electron Microscope Photos…...…...16
2.1.3.7 Analyses of Scanning Electron Microscope Graphs…………....17
2.2 Electrical characteristics of Metal Induced Lateral Crystallized Poly-Si Thin Film Transistors
2.2.1 Introduction……………………………………..………………...…..18
2.2.2 The Fabrication Process Flow of Metal Induced Lateral Crystallized
Polycrystalline Silicon Thin Film Transistors………………………...19
2.2.3 Results and Discussions
2.2.3.1 Electrical Properties of MILC TFTs with SiH4 Precursor and Different Active Layer Thickness…………………………….20
2.2.3.2 Electrical Properties of MILC TFTs with Si2H6 Precursor and Different Active Layer Thickness……………………….…...21
2.2.3.3 Electrical Properties of TFTs with Different Deposition Precursor
2.2.3.4 Electrical Properties of TFTs with Different Location in MILC region…………………………………………………...……22
2.2.3.5 Electrical Properties of TFTs with Post Thermal Annealing.....22
2.3 SUMMARY…………………………………………………………..24
CHAPTER 3: MATERIAL AND ELECTRICAL CHARACTERISTICS OF MILC POLYCRYSTALLINE SILICON THIN FILM TRANSISTORS WITH POST LASER ANNEALING
3.1 Introduction……………………………………………………...…....26
3.2 Material Analyses of Metal Induced Lateral Crystallized Poly-Si Thin Film with Post Laser Annealing
3.2.1 Experimental Details……………………………………………...…..27
3.2.2 Mechanism of MILC with Post Laser Annealing………………...…...28
3.2.3 Analyses of Scanning Electron Microscope Graphs Graphs………….29
3.3 Fabrication of MILC Poly-Si Thin Film Trasistors with Post Laser Annealing
3.3.1 Experimental Details……………………………………………….....31
3.3.2 Results and Discussions
3.3.2.1 L-MILC TFTs with thin and thick active layers layers………..32
3.3.2.2 Uniformity and Performance of Conventional ELA TFTs and L-MILC TFTs……………………………………………….....33
3.4 SUMMARY…………………………………………………………..34
CHAPTER 4: CONCLUSOINS……………………………………………...…..36
REFERENCES
Chapter 1
Chapter 2
Chapter 3
APPENDIX
簡歷

Chapter 1
1. Ichio Yudasaka and Hiroyuki Ohshima, “polysilicon thin film transistors”, Mat. Res. Soc. Symp. Proc., vol. 182, 1990.
2. S.Wolf and R.N.Taauber, “Silicon processing for the VLSI Era,” Lattice Press, California, vol.1, chap.6, p.161, 1986.
3. S.D.Brotherton, “Polycrystalline silicon thin film transistors,” Semicond. Sci. Technol., 10, 1995.
4. C. H. Fa and T. T. Jew, “The polysilicon insulated-gate field-effect transistors,” IEEE Trans. Electron Devices, vol.13, no.2, p.290, 1996.
5. T. I. Kamins, “Hall mobility in chemical deposited polycrystalline silicon,” J. Appl. Phys., vol.42, p.4357, 1971.
6. G. Baccarani, B. Ricco and G. Spadin, “Transport properties of polycrystalline silicon films,” J. Appl. Phys., vol.49, p.5565, 1978
7. I-Wei Wu, Alan G. Lewis, Tiao-Yuan Huang, Warren B. Jackson and Anne Chiang, “Mechanism and device-to-device variation of leakage current in polysilicon thin film transistors”, IEDM 90, pp867-870.
8. C. F. Yeh, T. Z. Yang, C. L. Chen, T. J. Chen and Y. C. Yang, “Experimental comparison of off-state current between high-temperature- and low-temperature- processed undoped channel polysilicon thin-film transistors”, Jpn. J. Appl. Phys., vol.32, 1993, pp.4472-4478.
9. J. Ohwada, M. Takabatake, Y. A. Ono, A. Mimura, K. Ono and N. Konish, “Peripheral circuit integrated poly-Si TFT-LCD with gray scale representation,” IEEE Trans. Electron Devices, vol.36, no.9, p.1923, 1989
10. A. G. Lewis, David D. Lee and R. H. Bruce, “Polysilicon TFT circuit design and performance,” IEEE J. Solid-State Circuit, vol.27, no.12, p1833, 1992.
11. T. Morita, Y. Yamamoto, M. Itoh, H. Yoneda, Y. Yamane, S. Tsuchimoto, F. Funadda and K. Awane, “VGA driving with low temperature processed poly-Si TFTs,” IEDM Tech. Dig. 1995, p841.
12. M. J. Edwards, S. D. Brotherton, J. R. Ayres, D. J. McCulloch and J. P. Gowers,” Laser crystallized poly-Si circuits for AMLCDs,” Asia Display, p.335, 1995.
13. K. Y. Lee, Y. K. Fang, C. W. Chen, K. C. Huang, M. S, Liang and S. G. Wuu, “To suppress UV damage on the subthreshold characteristics of TFT during hydrogenation for high density TFT SRAM,” IEEE Electron Device Lett., vol.18, no.1, pp.4-6,1997.
14. N. D. Toung, G. Harkin, R. M. Bunn, D. J. McCulloch and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process, “ IEEE Electron Device Lett., vol.43, no.11m pp.1930-1935,1996.
15. Zhiguo Meng, Mingxiang Wang, and Man Wong, “High Performance Low Temperature Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin Film Transistors for System-on-Panel Applications,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 2, FEBRUARY 2000.
16. P. Migliorate, “Progress in active matrix addressing of LCDs,” in Proc. Int. Display Res. Conf., 1987, p44.
17. Masanori Yuki, Kunio Masumo and Masaya Kunigita, “A Full-Color LCD Addressed by Poly-Si TFTs Fabricated Below 450℃,” IEEE Transaction on electron devices, vol.36, no.9, pp.1934-1937, 1989.
18. Toshihisa Tsukada, “Advances in Amorphous Silicon Technology for LCDs,” IEDM 97-531
19. C. F. Yeh, C. L. Chen, Y. C. Yang, S. S. Lin, T. Z. Yang and T. Y. Hong, ”Low-temperature-processed poly-Si thin-film transistors using solid-phase-crystallization and liquid-phase-deposited gate oxide,” Jpn. J. Appl. Phys., vol.33, pp.1798-1802, 1994.
20. H. Y. Lin, C. Y, Chang, T. F. Lei, M. Liu, W. L. Yang, J. Y. Cheng, H, C, Tseng and L. P. Chen, “Low-temperature and low thermal budget fabrication of polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett, vol.17, no.11, pp.503-505,November 1996.
21. M. Stewart, L. Pires, R. Howell, M. Hatalis, O. Prache, W. Howard, “Polysilicon VGA Active Matrix OLED Display-Technology and performance,” IEDM Proceedings p.871, 1998.
22. R. M. A. Dawson et al.” Design of an improved Pixel for a Polysilicon Active Matrix Organic EL Display,” SID Digest 4.2, 1998.
23. A.Chiang, I.W. Wu, M. Hack, A.G. Lewis, T.Y Huang and C.C Tsai, Extended Abstract of SSDM91, p. 586, 1991
24. K. Nakazama, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys. vol.69, pp1703, 1991.
25. K. Nakazama, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys. vol.69, pp1703, 1991.
26. A. T. Vouttsas and M. K. Hatalis, ”Deposition and crystallization of a-Si low-pressure chemical vapor deposited films obtained by low-temperature pyrolysis of disiline,” J. Electrochem. Soc., vol.140, pp.871-877, 1993.
27. K. Sera, F. Okumura, H. Uchida, S. Itoh and K. Hotta, “High performance TFTs fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film,” IEEE Trans, Electron Device, vol.36, pp.2868-2872, 1989.
28. K. Shimizu, O. Sugiura and M. Matsumura, “On-ship bottom-gate polysilicon and amorphous silicon thin-film transistors using excimer laser annealing,” Japan J. Appl. Phys., vol.29, pp.L1775-L1777, 1990.
29. S.-W. Lee and S.-K. Joo, “Low temperature poly-Si thin film transistor fabrication by metal induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, pp. 160—162, Apr. 1996.
30. F. Oki, Y. Ogawa, and Y. Fujiki, “Effect of deposited metals on the crystallization temperature of amorphous germanium film,” Jpn. J. Appl. Phys., vol. 8, p. 1056, 1969.
31. J. E. Green and L. Mei, “Metal-induced crystallization of R.F. sputtered a-Si thin films,” Thin Solid Films, vol. 34, pp. 27—30, 1976.
32. ------, “High temperature metal-induced crystallization of R.F. sputtered amorphous Si thin films,” Thin Solid Films, vol. 37, pp. 429—440, 1976.
33. J. Bosnell and U. Voisey, “The influence of contact materials on the conduction crystallization temperature and electrical properties of amorphous germanium, silicon and boron films,” Thin Solid Films, vol. 6, pp.161—166, 1970.
34. E. Nygren, A. P. Pogany, K. T. Short, J. S. Williams, R. G. Elliman, and J. M. Poate, “Impurity-stimulated crystallization and diffusion in amorphous silicon,” Appl. Phys. Lett., vol. 52, pp. 439—441, 1988.
35. F. Spaepen, E. Nygren, and A. V. Wagner, “Metal-enhanced growth of silicon,” NATO ASI Series E: Appl. Sci., vol. 222, pp. 483—499, 1992.
36. R. C. Cammarata, C. V. Thompson, C. Hayzelden, and K. N. Tu, “Silicide precipitation and silicon crystallization in nickel implanted amorphous silicon thin films,” J. Mater. Res., vol. 5, no. 10, pp. 2133—2138, 1990.
Chapter 2
1. K.T-Y. Kung and D. W. Greve, IEEE Electron Device Lett. Edl-8, p.361, 1987.
2. H. Kuriyama, S. Kiyama, S. Noguchi, T. Juwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda and S. Nakano,Tech. Dig. Int. Electron Device Meet., p.563, 1991.
3. G. Radnoczi, A.Robertsson, H.T.G.Hentzell, S. F. Gong and M. A. Hasam, J. Appl. Phys., vol.69, pp.6394, 1991.
4. G. Radnoczi, A.Robertsson, H.T.G.Hentzell, S. F. Gong and M. A. Hasam, J. Appl. Phys., vol.69, pp.6394, 1991.
5. L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engstrom and P. A. Psaras, J. Appl. Phys., vol.62, pp.3647, 1987.
6. B. Bian, J. Yie, B. Li and Z. Wu, “Fractal formation in a-Si:H/Ag/a-Si:H films after annealing,” J. Appl. Phys., vol.73, pp.7402, 1993.
7. Y. Kawazu, H. Kudo, S. Onari and T. Arai, Jpn. J. Appl. Phys., Part1, vol.29, pp.729, 1990.
8. S.-W. Lee, Y.-C. Jeon, and S.-K. Joo, "Pd Induced Lateral Crystallization of Amorphous Si Thin Films," Applied Physics Lett., Vol. 66, No. 13, March 1995.
9. S. Y. Yoon, J. Y. Oh, C. O. Kim and J. Jang, “Low temperature solid phase crystallization of amorphous silicon at 380℃,” J. Appl. Phys., vol.84, no.11, 1 December, 1998.
10. F. d’Heurle, S. Petersson, L. Stolt and B. Strizker, J. Appl. Phys., vol.53, pp.5678, 1982.
11. K. N. Tu and J. W. Mayer, in Thin Films — Interdiffusion and Reactions, edited by J. M. Poate, K. N. Tu and J. W. Mayer (wiley, New York, 1978), p.359.
12. K. K. Chu, S. S. Lau, J. W. Mayer and H. Muller , Thin Solid Films, 25, p393, 1975.
13. K. N. Tu, J. Appl. Phys., vol.48, pp.3379, 1977.
14. T. G. Ffinstad, J. W. Mayer and M. A. Nicolet, Thin Solid Films, p.391, 1978.
15. L. Liau, S. S. Lau, M. A. Nicolet and J. M. Mayer, in Proceedings of the 1st ERDA Semiannual Photo-Voltaic Conversion Program Conference, UCLA, Los Angeles, Calfornia, July 22-25, 1975.
16. K. N. Tu, E. Alessandrini, W. K. Chu, H. krautle and J. W. Mayer, Jpn. J. Appl. Phys. vol. 13, Suppl. 2, part 1, p.669, 1974
17. R. T. Tung, J. M. Gibson, D. C. Jacobson and J. M. Poate, Appl. Phys. Lett., vol.43, p.476, 1983.
18. R. C. Cammarata, C. V. Thompson and K. N. Tu, Appl. Phys. Lett., vol.51, p.1108, 1987.
19. C. Hayzelden and J. L. Batstone ,” Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films,” J. Appl. Phys., vol. 73, no. 12 pp. 8279-8289, 1993.
20. C. D. Lien, M. A. Nicolet and S. S. Lau, Phys. Status Solodo, A81, p.123, 1984.
21. R. Kakkad, J. Smith, W. S. Lau, S. J. Fonash and R. Kerns, “Crystallized Si films by low-temperature rapid thermal annealing on amorphous silicon,” J. Appl. Phys., vol.65, no.5, pp.2069-2072, Mar. 1989.
22. T. Hempel, O. Schoenfeld and F. Syrowatka,” Needle-like crystallization of Ni doped amporphous silicon thin films,” Sold State Communication, vol.85, no.11, pp.921-924, 1993.
23. C. Hayzelden, J. L. Batstone and R. C. Cammaratta, “In situ transmission electron microscopy studies of silicide-mediated crystallization of amorphous silicon,” Appl. Phys. Lett., vol.60, no.2, pp.225-227, Jan.1992.
24. K. Nakazama, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys. vol.69, pp1703, 1991.
25. A. T. Vouttsas and M. K. Hatalis, ”Deposition and crystallization of a-Si low-pressure chemical vapor deposited films obtained by low-temperature pyrolysis of disiline,” J. Electrochem. Soc., vol.140, pp.871-877, 1993.
26. Hiroki Hamada, Akihumi Sasaki, Yuji Okita and Tatuhiko Niina, “Polysilicon Thin-Film Transistors Processed at Low Temperature Using Solid-Phase Crystallization in Wet Oxygen Atmosphere,” Jpn. J. Appl. Phys. Vol.35, Part 2, No. 6A, 1 June 1996.
27. Kensuke Ishikawa, Motohiro Ozawa, Chang-Ho Oh and Masakiyo Matsumura,” Excimer-laser-induced lateral-growth of silicon thin-films,” Jpn. J. Appl. Phys. Vol. 37, p. 731, 1998.
28. Chang-Ho Oh, Motohiro Ozawa and Masakiyo Matsumura,” A Novel Phase-Modulated Excimer-Laser Crystallization Method of Silicon Thin Films,” Jpn. J. Appl. Phys. Vol. 37, p. L492, 1998.
29. H. J. Kim and James S. Im,” New excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si films for thin film transistors,” Appl. Phys. Lett., vol. 68, p. 1513, 1996.
30. Motohiro Ozawa, Chang-Ho Oh and Masakiyo Matsumura, “Two-dimensionally position-controlled excimer-laser-crystallization of silicon thin films on glassy substrate,” Jpn. J. Appl. Phys. Vol. 38, p. 5700, 1999.
31. G. A. Bhat, Z. Jin, H. S. Kowk and M. Wang, “Effects of Longitudinal Grain boundaries on the Performance of MILC-TFTs,” IEEE Electron Device Lett., vol.20, no.2, pp.97-99, Feb. 1999.
32. M. Wamg, G. A. Bhat and H. S. Kwok, “Reduction of Threshold Voltage in Metal-Induced-Laterally-Crystallized Thin Film Transistors,” pp.291-284., ASID 99.
33. W. K. Kwak, B. R. Cho, S. Y. Yoon, S. J. Park and J. Jang, “A High Performance Thin-Film Transistors Using a Low Temperature Poly-Si by Silicide Mediated Crystallization,” IEEE Electron Device Lett., vol. 21, no.3, pp.107-109, March 2000.
34. G. Bhat, H. Kwok and M. Wong, “Plasma Hydrogenation of Metal- Induced Laterally Crystallized Thin Film Transistors,” IEEE Electron Device Lett., vol.21, no.2, pp.73-75, Feb. 2000.
35. Z. Meng, M. Wang and W. Wong, “High Performance Low Temperature Metal-Induced Unilaterally Crystallized Polycrystalline Silicon thin Film Transistors for System-on Panel Application,” IEEE Trans. Electron Devices, vol.47, no.2, pp.404-409, Feb. 2000.
36. M. Wong, Z. J. Gururaj, A. Bhat, P. C. Wong and H. S. Kwok, “Characterization of the MIC/MILC interface and Its Effects on the Performance of MIC Thin-Film Transistors,” IEEE Trans. Electron Devices, vol.47, no.5, pp.1061-1067, May 2000.
37. Z. Jin, K. Moulding, H. S. Kwok and M. Wong, “The Effects of Extended Heat Treatment on Ni Induced Lateral Crystallization of Amorphous Silicon Thin Films,” IEEE Trans. Electron Devices, vol.46, no.1, pp.78-82, Jan. 1999.
38. Hongmei Wang, Mansun Chan, Singh Jagar, Vincent M. C. Poon, Ming Qin, Yangyuan Wang, Ping K. Ko, “Super Thin-Film Transistor with SOI CMOS Performance Formed by a Novel Grain Enhancement Method,” IEEE Trans. Electron Devices, vol. 47, no. 8, Aug. 2000.
39. Mingxiang Wang, Zhiguo Meng, and Man Wong, “The Effects of High Temperature Annealing on Metal-Induced Laterally Crystallized Polycrystalline Silicon,” IEEE Trans. Electron Devoces, vol. 47, no. 11, Nov. 2000.
40. Victor W. C. Chan, Philip C. H. Chan, Mansun Chan, “Three-Dimensional CMOS SOI Integrated Circuit Using High-Temperature Metal-Induced Lateral Crystallization,” IEEE Trans. Electron Devices, vol. 48, no. 7, July 2001
Chapter 3
1. Sera K., Okumura F., Uchida H., Itoh S., Kaneko S. and Hotta, K., “High-performance TFTs fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film,” IEEE Trans. Electron Deices, vol. 36, p. 2868, 1989.
2. Sameshima T, Hara M and Usui S., “XeCl excimer laser annealing used to fabricate poly-Si TFTs,” Jpn. J. Appl. Phys., vol. 28, no. 10, p. 1789, 1989.
3. Brotherton S. D., McCulloch D. J., Clegg J. B. and Gowers J. P., ”Excimer-laser-annealed poly-Si thin-film transistors,” IEEE Trans. Electron Deices, vol. 40, p. 407, 1993.
4. Chang-Ho Oh and Masakiyo Matsumura, “ Twin-grain Si thin-film transistors produced by single-shot irradiation of excimer-laser light,” Device Research Conference, 1999.
5. Motohiro Ozawa, Chang-Ho Oh and Masakiyo Matsumura, “Two-dimensionally position-controlled excimer-laser-crystallization of silicon thin films on glassy substrate,” Jpn. J. Appl. Phys. Vol. 38, p. 5700, 1999.
6. Cao M, Talwar S, Kramer KJ, Sigmon TW, Saraswat KC, “A high-performance polysilicon thin-film transistor using XeCl excimer laser crystallization of pre-patterned amorphous Si films,” IEEE Trans. Electron Deices, vol. 43, p. 561, 1996.
7. G. K. Giust and T. W. Sigmon, “Comparison of excimer laser recrystallized prepatterned and unpatterned silicon films on SiO2,” J. Appl. Phys., vol. 81, p. 1204, 1997.
8. Kensuke Ishikawa, Motohiro Ozawa, Chang-Ho Oh and Masakiyo Matsumura,” Excimer-laser-induced lateral-growth of silicon thin-films,” Jpn. J. Appl. Phys. Vol. 37, p. 731, 1998.
9. Chang-Ho Oh, Motohiro Ozawa and Masakiyo Matsumura,” A Novel Phase-Modulated Excimer-Laser Crystallization Method of Silicon Thin Films,” Jpn. J. Appl. Phys. Vol. 37, p. L492, 1998.
10. H. J. Kim and James S. Im,” New excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si films for thin film transistors,” Appl. Phys. Lett., vol. 68, p. 1513, 1996.
11. Ishihara R, Matsumura M., “A novel double-pulse excimer-laser crystallization method of silicon thin-films,” Jpn. J. Appl. Phys. Vol. 34, p. 3976, 1995.
12. Motohiro Ozawa, Chang-Ho Oh and Masakiyo Matsumura, “Two-dimensionally position-controlled excimer-laser-crystallization of silicon thin films on glassy substrate,” Jpn. J. Appl. Phys. Vol. 38, p. 5700, 1999.
13. Im J. S., Kim H. J. and Thompson M. O., “Phase transformation mechanisms involved on excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett., vol. 63, p. 1969, 1993.
14. Thompson M. O., Galvin G. J., Mayer J. W., Peercy P. S., Poate J. M., Jacobson D. C., Cullis A. G. and Chew N. G., “Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation,” Physical Review Letters, vol.52, no.26, p. 2360, 1984.
15. Stiffler S. R., Thompson M. O. and Peercy P. S., “Supercooling and nucleation of silicon after laser melting,” Physical Review Letters, vol.60, p. 2519, 1988.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top