跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱芳村
研究生(外文):Fang-Tsun Chu
論文名稱:以準分子雷射結晶方法製作低溫複晶矽鍺薄膜電晶體之研究
論文名稱(外文):Study on Low-Temperature Polycrystalline Silicon-Germanium Thin-film Transistors Fabricated by Excimer Laser Crystallization
指導教授:鄭晃忠鄭晃忠引用關係
指導教授(外文):Huang-Chung Cheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:93
中文關鍵詞:矽鍺薄膜電晶體準分子雷射結晶法
外文關鍵詞:Silicon-GermaniumSiGeThin-film transistorsTFTsexcimer laser crystallization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:407
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對利用準分子雷射結晶法製備低溫複晶矽鍺薄膜的機制做深入的探討,並配合製程流程的設計與改良,製作出高性能之低溫複晶矽鍺薄膜電晶體。
低溫複晶矽薄膜電晶體已被廣泛的應用在高密度記憶體以及高效能顯示器上。為了配合高速電路的運作,薄膜電晶體必須具備有更高的載子移動率。基於高效能元件的需求,準分子雷射已被普遍的研究於如何製備出具有良好結晶性的高品質複晶矽薄膜。另一方面,為了突破製程技術上的限制,新的材料也不斷的被提出;目前,由於複晶矽鍺擁有相當高的載子移動率,故被視為最有可能取代複晶矽薄膜做為電晶體主動區的材料。
複晶矽鍺薄膜在高效能的半導體元件上已有相當多方面的應用。近幾年來,由於具備可降低製程熱預算及提高載子移動率的優點,複晶矽鍺薄膜電晶體引起相當程度的注意。目前已有多種製備複晶矽鍺薄膜電晶體的技術被提出,包括固相再結晶法及快速熱退火法…等。然而,利用準分子雷射技術製作複晶矽鍺薄膜電晶體確鮮少被研究。
本論文首先針對非晶矽鍺薄膜的沉積以及準分子雷射結晶法的機制做深入的研究。實驗結果發現,由於鍺具有催化的效應,故相較於非晶矽薄膜沉積,利用低壓化學氣相沉積法可於較低的溫度下沉積非晶矽鍺薄膜。且隨著GeH4/SiH4的氣流比例增加,薄膜沉積的速率將提高,而薄膜由非晶相轉換成複晶相的溫度則會下降,如此一來,便可降低沉積製程的熱預算。
本研究利用準分子雷射對非晶矽鍺薄膜進行再結晶,藉由多種材料分析的技術可以發現,非晶矽鍺薄膜可於準分子雷射的照射下達到相當程度的結晶 ; 然而,由於矽跟鍺兩種元素熔點上的差異,造成在利用準分子雷射結晶的同時發生了鍺偏析的現象。此外,相較於傳統利用準分子雷射結晶法所製備的複晶矽薄膜,複晶矽鍺薄膜經準分子雷射結晶後呈現較差的結晶性。因此,利用準分子雷射直接對非晶矽鍺薄膜進行再結晶時,將會遭遇製程上所引起的問題 (如:鍺偏析,結晶性差..等),進而降低元件的電特性。
為了避免利用準分子雷射對矽鍺薄膜直接進行再結晶時所遭遇到的製程問題,我們提出兩種製程改善方法來製備高效能的複晶矽鍺薄膜電晶體。為了降低鍺偏析的效應,我們於經準分子雷射接晶後的複晶矽鍺薄膜表面再覆蓋上一層矽薄膜,接著再進行第二次準分子雷射的再結晶,如此一來,將可以有效的降低鍺偏析的情形,進而改善元件的特性。然而,受限於複晶矽鍺的本身較差的結晶性,元件的電特性表現仍然不符合需求。
因此,我們進一步提出了利用準分子雷射摻雜鍺之複晶矽鍺薄膜電晶體來達到高效能元件的需求。論文中,我們提出了兩種機制來描述此種元件的電特性。由於主動區域具有良好的結晶性加上藉由鍺摻雜所提升的載子移動率,利用準分子雷射摻雜鍺之複晶矽鍺薄膜電晶體於小尺寸元件上呈現出相當優秀的元件特性。而相較於利用準分子雷射製備的複晶矽薄膜電晶體,利用準分子雷射摻雜鍺之複晶矽鍺薄膜電晶體於載子移動率及驅動電流上分別提升了41%及52%。故藉由本論文中所提出的製程改善,利用準分子雷射結晶法可製備具有高效能的低溫複晶矽鍺薄膜電晶體,並符合未來製程技術的發展及高效能元件的需求。

Low-temperature poly-Si thin-film transistors (LTPS TFTs) have been used in various applications including high-density memories and high-performance displays. TFTs with high carrier mobility are required for high-speed circuit operation. To fabricate devices with high carrier mobility, excimer laser crystallization (ELC) technology was extensively studied to create high-quality poly-Si films with large sized grain and good crystallinity. On the other hand, new materials were also widely investigated to overcome the existing technology limitations. At present, polycrystalline silicon-germanium (poly-Si1-xGex) is an excellent candidate as an alternative to poly-Si for the channel active layer due to the high carrier mobility of Ge atom.
Poly-Si1-xGex films have been used in various applications for high-performance semiconductor devices. In recent years, low-temperature poly-Si1-xGex TFTs has attracted many attentions due to the lower process thermal budget and carrier mobility enhancement. Several crystallization technologies including solid phase crystallization (SPC) and rapid thermal annealing (RTA) have been reported to fabricate poly-Si1-xGex TFTs. However, little investigation has been done on poly-Si1-xGex TFTs fabricated by excimer laser crystallization.
In this thesis, we first explored the mechanisms of both deposition and excimer laser crystallization of amorphous Si1-xGex thin films. The experiment results demonstrate that a-Si1-xGex thin films could be deposited at lower temperature by LPCVD than those of a-Si thin films. As the GeH4 to SiH4 gas flow ratio increases, deposition rate of a-Si1-xGex thin films increases while the transition temperature for amorphous-to-polycrystalline deposition decreases. The reduced thermal budget of deposition process could be attributed the catalytic effect by Ge incorporation.
Excimer laser irradiation was performed to crystallize the a-Si1-xGex films in this study. Physical characterizations results indicate that a-Si1-xGex can be effectively crystallized by excimer laser irradiation. However, due to the difference of the melting point of Si and Ge atoms, Ge segregation occurs during ELC process. Furthermore, ELC poly-Si1-xGex films exhibit worse crystallinity in comparison with ELC poly-Si films. As the result, TFTs fabricated by direct laser crystallization of a-Si1-xGex thin film would suffer from these deteriorated process issues, resulting in poor device performance.
To avoid the process-related issues of ELC poly-Si1-xGex films, we proposed two novel modified ELC processes to fabricate high-performance poly-Si1-xGex TFTs. The ELC poly-Si1-xGex TFTs with a Si capped layer were introduced to alleviate Ge segregation during ELC process. Although the device performances were improved by introducing a Si capping layer, the worse crystallinity of ELC poly-Si1-xGex active layer still limited the electrical properties of the devices. Therefore, a novel Ge-doped ELC poly-Si1-xGex TFT with lower Ge concentration and better crystallinity in the active layer was proposed to manufacture high-performance devices. Two competing mechanism were established to illustrated the electrical characteristics of Ge-doped ELC poly-Si1-xGex TFTs. Since the good crystallinity and carrier mobility enhancement by Ge incorporation, Ge-doped ELC poly-Si1-xGex TFTs exhibit excellent carrier mobility and high driving current in short channel devices. The mobility and drain current of the Ge-doped ELC poly-Si0.91Ge0.09 TFTs with W/L=2μm/2μm were enhanced by 41% and 52% than those of the conventional ELC poly-Si TFTs.
By using the modified process proposed in this thesis, novel Ge-doped ELC poly-Si1-xGex TFTs demonstrate excellent performance in short channel devices that would meet the requirements for the trends of low-temperature polycrystalline TFT technology developments.

摘 要
ABSTRACT
謝 誌
TABLE LISTS
FIGURE CAPTIONS
CHAPTER 1 : INTRODUCTION
1.1 Overview of Low-Temperature Polycrystalline Silicon Thin-Film Transistors
(LTPS TFTs) Technology Developments
1.2 Overview of Silicon-Germanium Applications on Microelectronics
1.3 Motivation
1.3.1 Excimer Laser Crystallization of a-Si1-xGex Thin Films
1.3.2 Silicon-Germanium Applications for Low-Temperature Polycrystalline Thin Film Ttransistors
1.4 Thesis Outline
CHAPTER 2 : EXCIMER LASER CRYSTALLIZATION OF AMORPHOUS
SILICON-GERMANIUM THIN FILMS
2.1 Introduction
2.2 Experimental Procedure
2.3 Results and Discussion
2.3.1 Amorphous Silicon-Germanium Deposition
2.3.2 Excimer Laser Crystallization of Amorphous Silicon-Germanium Thin Films
2.3.2.1 Physical Characterization
2.3.2.2 Laser-induced Germanium Segregation
2.4 Summary
CHAPTER 3 : LOW-TEMPERATURE POLYCRYSTALLINE SILICON -GERMANIUM THIN FILM TRANSISTORS (LTPSG TFTS) FABRICATED BY EXCIMER LASER CRYSTALLIZATION
3.1 Introduction
3.2 Background
3.3 Experimental Procedure
3.4 Results and Discussion
3.4.1 Electrical characteristics
3.5 Summary
CHAPTER 4 : PROCESS MODIFICATIONS OF LOW-TEMPERATURE POLY SILICON-GERMANIUM TFTS FABRICAYED BY EXCIMER LASER CRYSTALLIZATION
4.1 Introduction
4.2 Experimental Procedure
4.2.2 ELC Poly-Si1-xGex TFTs with Si Capped Layer
4.2.2 Ge-doped ELC Poly-Si1-xGex TFTs
4.3 Results and Discussion
4.3.1 Electrical characterixation of ELC Poly-Si1-xGex TFTs with Si Capped Layer
4.3.2 Ge-doped ELC Poly-Si1-xGex TFTs
4.3.2.1 Physical Characterization
4.3.2.2 Electrical Characterization
4.4 Summary
CHAPTER 5 : CONCLUSIONS
REFERENCES
Chapter 1
Chapter 2
Chapter 3
Chapter 4
簡 歷

REFERENCES
Chapter 1
[1.1] M. Stewart, R. Howell, and L. Pires, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Deices, vol. 48, pp. 845-851, 2000.
[1.2] S. D. Brotherton, “Polycrystalline silicon thin-film transistors,” Semicond. Sci. Technol., vol. 10, pp. 721-738, 1995.
[1.3] T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, “Low-temperature fabrication of high-mobility poly-Si TFT’s for large-area LCD’s,” IEEE Trans. Electron Deices, vol. 36, pp. 929, 1989.
[1.4] H. Kakinuma, M. Mohri and T. Tsuruoka, J. Appl. Phys., vol. 77, pp. 646, 1995.
[1.5] V. Subramanian, P. Dankoski, and Degertekin, ”Controlled two-step solid-phase crystallization for high-performance polysilicon TFT's,“ IEEE Electron Device Letters, vol. 18, pp. 378-381, 1997.
[1.6] Seok-Woon Lee, and Tae-Hyung Ihn, “Fabrication of high-mobility p-channel poly-Si thin film transistors by self-aligned metal-induced lateral crystallization,” IEEE Electron Device Letters, vol. 17, pp. 407-409, 1996.
[1.7] S. D. Brotherton, D. J. McCulloch, J. P. Gowers, and A. Gill, “Laser crystallized poly-Si TFT’s,” Microelectron. Eng., vol. 19, pp. 101, 1992.
[1.8] K. Shimizu, O. Sugiura, and M. Matsumura, “High-mobility poly-Si thin-film transistors fabricated by a novel excimer laser crystallization method,” IEEE Trans. Electron Deices, vol. 40, pp. 112, 1993.
[1.9] H. Kuriyama, S. Kiyama, “Enlargement of poly-Si film grain size by excimer laser crystallization annealing and its thin film transistors,” Jpn. J. Appl. Phys., vol. 30, no. 12B, pp. 3700, 1991.
[1.10] H. Choi, E. Sadayuki, O. Sugiura, and M. Matsumura, ” Lateral growth of poly-Si film by excimer laser and its thin film transistor application,” Jpn. J. Appl. Phys., vol. 33, no. 1A, pp. 70, 1994.
[1.11] J. Y. Lee, C. H. Han, and C. K. Kim, “ECR plasma oxidation effects on performance and stability of polysilicon thin film transistors,” in IEDM Tech. Dig., pp. 523-526, 1994.
[1.12] Y. W. Choi, S. W. Park, and B. T. Ahn, “Effects of electron cyclotron resonance plasma thermal oxidation on the properties of polycrystalline silicon film,” Appl. Phys. Lett., vol. 74, pp. 2693-2695, 1999.
[1.13] A. J. Joseph, and J. D. Cressler, “Optimization of SiGe HBT’s for operation at high current densities,” IEEE Trans. Electron Devices, vol. 46, pp. 1347-1354, 1999.
[1.14] P.E. Hellberg, S.L. Zhang, “Work function of boron-doped polycrystalline Si1-xGex films,” IEEE Electron Device Letters, vol. 18, pp. 456-458, 1997
[1.15] Akira Nishiyama, and Kazuya Matsuzawa, “SiGe Source/Drain Structure for the Suppression of the Short-Channel Effect of Sub-0.1-μm p-Channel MOSFETs,” IEEE Trans. Electron Deices, vol. 48, pp. 1114-1120, 2001.
[1.16] Y. C. Yeo, V. Subramanian, and C. Hu, “Nanoscale ultra-thin-body silicon-on-insulator P-MOSFET with a SiGe/Si heterostructure channel,” IEEE Electron Device Lett., vol. 21, pp. 161-163, 2000.
[1.17] T.J. King, C. Saraswat, “ Polycrystalline silicon-germanium thin-film transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 1581-1591, 1994.
Chapter 2
[2.1] G. Ternent, A. Asenov, L. G. Thayne, and MacIntyre, “Si1-xGex p-channel MOSFETs with tungsten gate,” IEEE Electron Device Letters, vol. 35, pp. 430-331, 1999.
[2.2] K. C. Liu, S. K. Ray, and S. K. Oswal, “Enhancement of drain current in vertical Si1-xGex /Si PMOS transistors using novel CMOS technology,” Device Research Conference Digest, 5th, pp. 128, 1997.
[2.3] S. P. Voinigescu, and C.A.T. Salama, ”Optimized Ge channel profiles for VLSI compatible Si/ Si1-xGex p-MOSFET's,” IEDM Tech. Dig, pp. 369-732, 1994.
[2.4] Uangdi Shen, Chen Xu, and Jianxin Chen;” Development of Si1-xGex /Si HBT “Solid-State and Integrated-Circuit Technology, vol. 1, pp. 580-585, 2001.
[2.5] S. J. Koester, J. O. Chu, C. S. Webster, ”High-frequency noise performance of Si1-xGex p-channel MODFETs,” IEEE Electron Device Letters, vol. 36, pp. 674-675, 2000.
[2.6] J. S. Im, H. J. Kim and M. O. Thompson, “Phase transformation mechanisms involved on excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett., vol. 63, pp. 1969, 1993.
[2.7] M. O. hompson, and G. J. Galvin, “Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation,” Physical Review Letters, vol.52, no.26, pp. 2360, 1984.
[2.8] S. R. Stiffler, M. O. Thompson and P. S. Peercy, “Supercooling and nucleation of silicon after laser melting,” Physical Review Letters, vol.60, pp. 2519, 1988.
[2.9] James S. Im and H. J. Kim, “On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films,” Appl. Phys. Lett., vol. 64, pp. 2303, 1994.
[2.10] N. Ohtani, S. M. Mokler, and M.H. Xie, Appl. Phys. Lett., vol. 62, pp. 2042, 1993.
[2.11] H. C. Lin, C. Y. Chang, W. H. Chen, W. C. Tsai, T. C. Chang, and T. G. Jung, J. Electrochem. Soc., vol. 41, pp. 2559, 1994.
[2.12] A. Terakawa, M. Shima, and K. Sayama, J. Appl. Phys., vol. 32, pp. 4894, 1993.
[2.13] M. Sanganeria, D. T. Grider, M. C. Ozturk, and J. J. Wortman, J. Electron. Mater. Vol. 21, pp. 61, 1992.
[2.14] V. Z-Q Li, M. R. Mirabedini, and B. E. Hornung, ”Structure and properties of rapid thermal chemical vapor deposited polycrystalline silicon-germanium films on SiO2 using Si2H6, GeH4 and B2H6 gases,” J. Appl. Phys., vol. 83, pp. 5469, 1998.
[2.15] P. M. Garone, J. C. Sturm, and P. V. Schwatrz, “Silicon vapor phase epitaxial growth catalysis by the presence of germane,” Appl. Phys. Lett., vol. 56, pp. 1275, 1990.
[2.16] S. Wolf and R.N. Tauber, Silicon Processing for the VLSI, Vol.1, pp. 533, 1986.
[2.17] Min Cao, Tsu-Jae King, and Krishna C. Saraswat, “Determination of the densities of gap states in hydrogenated polycrystalline Si and Si0.8Ge0.2 films,” Appl. Phys. Lett., vol. 61, pp. 672, 1992.
Chapter 3
[3.1] S.D.S. Malhi, H. Shichijo, IEEE Trans. Electron Devices, vol. 32, pp. 258, 1985.
[3.2] M. Furuta, T. Kawamura, IEEE Trans. Electron Devices, vol. 40, pp. 1964, 1993.
[3.3] Y. Kuo and P.M. Koziowski, Appl. Phys. Lett., vol. 69, pp. 1092, 1996.
[3.4] H.J. Lim, B.Y. Ryu and J. Jang, Appl. Phys. Lett., vol. 66, pp. 2888, 1995.
[3.5] T.-J. King and K. C. Saraswat, “Polycrystalline silicon-germanium thin-film transistors,” IEEE Trans. Electron Dev., vol. 41, pp. 1581, 1994.
[3.6] S. Jurichich, T.-J. King, K. C. Saraswat, and J. Mehlhaff, “Low thermal budget polycrystalline silicon-germanium thin-film transistors fabricated by rapid thermal annealing,” Jap. J. Appl. Phys., vol. 33, pp. L1139, 1994.
[3.7] T.-J. King and K. C. Saraswat, “PMOS transistors in LPCVD polycrystalline silicon-germanium films,” IEEE Electron Device Letters , vol. 12, pp. 584 -586, 1991.
[3.8] H.C. Lin, “Fabrication of p-channel polycrystalline Si1-xGex thin-film transistors by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. Vol. 65, pp. 26, 1994.
[3.9] V. Subramanian and K. C. Saraswat, “Optimization of silicon-germanium TFT’s through the control of amorphous precursor characteristics,” IEEE Trans. Electron Devices, vol. 45, pp. 1690-1695, 2000.
[3.10] Z. H. Jin, G. A. Bhat , “Improving SiO2/poly-Si1-xGex interface using sputtered SiO2 and its application in TFT,” Proc. Int. Display Workshop, pp. 239—242, 1997.
[3.11] T. Chikatilov, Y. F. Yang, and E. S. Yang, “Improvement of Si1-xGex oxide grown by electron cyclotron resonance using H2O vapor annealing,” Appl. Phys. Lett., vol. 69, no. 17, pp. 2578-2580, 1996.
[3.12] A. J. Tang, J. A. Tsai, R. Reif, and T.-J. King, “A novel poly-silicon-capped polysilicon-germanium thin-film transistor,” IEDM Technical Digest, pp. 513, 1995.
[3.13] Z. H. Jin, M. Wong, and H. S. Kwok, “The role of amorphous Si buffer layer in polycrystalline Si1-xGex thin film transistors with Al2O3 gate insulators,” Proc. 18th Int. Display Research Conf., 1998.
[3.14] Wu, I.-W.; Huang, T.-Y.; Jackson, “Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation.” IEEE Electron Device Letters, vol. 12, pp. 181-183, 1991.
[3.15] K. R. Olasupo and M. K. Hatalis, “Leakage current mechanism in sub-micron polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 46, pp. 1218-1223, 1996.
Chapter 4
[4.1] S. R. Stiffler, M. O. Thompson, and P. S. Peercy, “Supercooling and nucleation of silicon after laser melting,” Physical Review Letters, vol.60, pp. 2519, 1988.
[4.2] A.G. Lewis, T. Y. Huang, and I-Wei Wu, “Physical mechanisms for short channel effects in polysilicon thin film transistors,” Electron Devices Meeting, International, pp.349, 1989.
[4.3] M. Yoshimi, M. Takahashi, T. Wada, K. Kato, S. Kambayashi, M. Kemmochi and K. Natori, ”Analysis of the drain breakdown mechanism in ultra-thin-film SOI MOSFETs,” IEEE Trans. Electron Deices, vol. 37, pp. 2015, 1990.
[4.4] M. Hatano, H. Akimoto, T. Sakai, “A novel self-aligned gate-overlapped LDD poly-Si TFT with high reliability and performance,” Electron Devices Meeting. Technical Digest., International, pp. 523, 1997.
[4.5] Cheol-Min Park, Byung-Hyuk Min, and Jae-Hong Jun, ”Self-aligned offset gated poly-Si TFTs with a floating sub-gate,” IEEE Electron Device Letters, vol. 18, pp.16-18, 1997.
[4.6] Daniel Chen, Mishel Matloubian, R. Sundaresan, B.-Y. Mao, C. C. Wei and Gordon P. Pollack, “Single-transistor latch in SOI mOSFET’s,” IEEE Electron Device Letters, vol. 9, pp. 636, 1988.
[4.7] M. Valdinoci, L. Colalongo, and G. Baccarani, ” Floating body effects in polysilicon thin-film transistors,” IEEE Trans. Electron Deices, vol. 44, pp. 2234, 1997.
[4.8] Lin C. W., Yang M. Z., Yeh C. C., Cheng L. J., Huang T. Y., Cheng H. C., Lin H. C., Chao T. S. and Chang C. Y., “Effects of plasma treatments, substrate types, and crystallization methods on performance and reliability of low temperature polysilicon TFTs,” Electron Devices Meeting. Technical Digest., International, pp. 305, 1999.
[4.9] T. Poiroux, J. L. Pelloie, G. Turban, and G. Reimbold, ”Plasma process-induced damage in SOI devices,” Electron Devices Meeting, International, pp.97, 1999.
[4.10] Min Cao, Tsu-Jae King, and Krishna C. Saraswat ” Determination of the densities of gap states in hydrogenated polycrystalline Si and Si0.8Ge0.2 films,” Appl. Phys. Lett., vol. 61, no. 6, pp. 10, 1996.
[4.11] M. Stutzmann, R. A. Street, C. C. Tsai, J. B. Boyce, and S. E. Ready, J. Appl. Phys., vol. 66, pp. 569, 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 10.鄭敦宇,海洋污染防治之國際法新法展,立法院院聞第二十八卷第九期,中華民國八十九年九月。
2. 9.林彬,我國對於船舶排氣污染之因應,引水會刊第三十六期,中華民國引水協會編印,中華民國八十九年元月。
3. 8.傅崑成,從聯合國海洋污染防治法公約看沿海國家對海洋污染的規範與執法管轄權,法令月刊第五十一卷第十期,中華民國八十九年十月。
4. 7.徐國勇,阿瑪斯號輪污染案件法律適用之探討,全國律師四月號,中華民國九十年四月。
5. 6.邱錦添,兩岸有關船舶污染海域之規定及其法律責任-從希臘籍貨輪『阿瑪斯號』油污染事件談起,法令月刊第五十二卷第五期,中華民國九十年五月。
6. 5.黃昭元,行船人ㄟ悲哀-阿瑪斯號貨輪船員限制出境案,月旦法學雜誌第七十七期,台北:元昭出版社,中華民國九十年十月。
7. 3.柯澤東,希臘籍阿瑪斯號貨輪油污染事件-戰爭與和平,月旦法學雜誌第七十八期,台北:元昭出版社,中華民國九十年十一月。
8. 11.華健,防制船舶空氣污染立法後之燃油品質,船舶科技第二十四期,中華民國船舶機械工程學會,中華民國八十八年一月一日。
9. 12.蔡秀卿,環境保護基本法草案之檢討,立法院院聞第二十八卷第三期,八十九年三月出版。
10. 13.許劍英,當前我國的海洋政策與立法,立法院院聞第二十卷第八期,中華民國八十八年八月。
11. 16.吳嘉生,論「污染者付費原則」之國際法規範,軍法專刊第四十三卷第五期,中華民國八十六年五月一日。
12. 17.陳荔彤,海上船舶航行安全的國際法規則,東海大學法學研究第十期,東海大學法律學系法學研究會出版,中華民國八十五年三
13. 18.羅俊瑋,海洋污染國際立法之研究,立法院院聞第二十四卷第十期,中華民國八十五年十月出版。
14. 19.蘇義雄,海洋環境保護與國際法-兼論油料和放射性廢料之污染,中興法學第二十二期,第三十八期,中華民國八十五年八月。
15. 21.陳慈陽,論環境政策與環境法之污染者付費原則,中興法學第三十八期,中華民國八十三年十月。