跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張鴻智
研究生(外文):Hung-Chih Chang
論文名稱:超薄氧化層CMOS元件中低頻雜訊分析
論文名稱(外文):Analysis of Flicker Noise Degradation Mechanism in Ultra-thin Oxide CMOS
指導教授:汪大暉
指導教授(外文):Tahui Wang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:60
中文關鍵詞:超薄氧化層元件低頻雜訊分析
外文關鍵詞:AnalysisFlickerNoiseDegradationMechanismUltra-thinOxideCMOS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:94
  • 收藏至我的研究室書目清單書目收藏:0
超薄氧化層CMOS元件中低頻雜訊分析
學生:張鴻智 指導教授:汪大暉 博士
國立交通大學 電子工程學系 電子研究所
摘要
在之前的研究顯示低頻雜訊是觀察矽氧介面可靠性不錯的指標,本篇主要是根據Unified Noise Model以及建立Two-Region Model探討氧化層可靠性和低頻雜訊的關係,經由stress產生衰減和低頻雜訊的關係了解雜訊的主要來源,由我們的實驗結果可知熱載子會對1/f雜訊產生及嚴重的增加,這個現象可藉由Two-Region Model來解釋,除此之外,低頻雜訊在經由高壓操作下的變化會根據測量時的閘極偏壓以及電晶體的類型而不同,其原因是不同1/f雜訊的擾動機制所造成,我們發現在n型電晶體中高低閘極偏壓分別由移導率擾動以及數量擾動所主宰,然而在p型電晶體主要由移導率擾動所主宰.
此外,超薄氧化層電晶體會有直接穿燧電流以及,在高閘極偏壓會有軟性崩潰,因此也可用低頻雜訊來觀察其對元件的影響程度,在軟性崩潰前後比較發現p型電晶體和n型電晶體相比有嚴重的低頻雜訊衰變,我們的研究結果顯示是由於軟性崩潰的突穿點正電荷聚集因而產生的不均勻的通道導通電壓所造成.

Analysis of Flicker Noise Degradation Mechanism in Ultra-thin Oxide CMOS
Student: Hung-Chih Chang Advisor: Dr. Tahui Wang
Institute of Electronics, National Chiao Tung University
Hsinchu, Taiwan, R.O.C
Abstract
Previous research has shown that the drain current flicker noise is a good monitor of the Si-SiO2 interface quality. This thesis will focus on the flicker noise degradation issue after stressing and use a two-region model based on the unified noise theory to study this phenomenon. The flicker noise degradation mechanisms are verified by various kinds of stresses. From our observation, we found that the local oxide charge caused by CHE stress could give rise to serious degradation of flicker noise, which can be understood through the two-region model. Besides, the behavior of flicker noise degradation depends on the measurement gate bias and the type of MOS transistors, which is attributed to different dominant noise process, such as number fluctuation and mobility fluctuation. We found that the number fluctuation dominates at low gate bias in nMOSFETs. As the gate bias increases, the mobility fluctuation mechanism will become more important. In the case of pMOSFETs, the mobility fluctuation dominates the noise behavior in the entire range of applied gate biases.
Furthermore, the soft breakdown effects on drain current flicker noise degradation in ultra thin oxide MOSFETs are also investigated. The results show that the soft breakdown effects would induce larger noise degradation in pMOSFETs, when compared to nMOSFETs. Our study reveals that the serious noise degradation in pMOSFETs is attributed to the non-uniform threshold voltage distribution resulting from positive oxide charge creation in the soft breakdown spot.

Contents
Chinese Abstract i
English Abstract ii
Acknowledgements iv
Contents v
Figure Captions vii
Chapter 1 Introduction 1
Chapter 2 Fundamentals of Flicker Noise in MOSFETs 3
2.1 What is Noise 3
   2.2 Flicker Noise Unified Model 3
2.3 Flicker Noise Measurement 8
Chapter 3 Stress-enhanced Flicker Noise Degradation 10
    3.1 Introduction 10
3.2 1/f noise Degradation by Different Stresses 11
3.2.1 Maximum Substrate Current Stress 11
3.2.2 Maximum Gate Current Stress 11
3.2.3 Fowler-Nordheim Stress 12
3.3 1/f noise Degradation in Special ONO Charge Storage Cells 16
3.3.1 Fowler-Nordheim Program 16
3.2.2 Maximum Gate Current Program 16
3.2.3 Double Side Maximum Gate Current Program 17
3.4 Non-uniform Threshold Voltage Method 22
Chapter 4 Dominant 1/f Noise Degradation Mechanisms 26
4.1 Introduction 26
4.2 Gate Voltage Dependence of Flicker Noise in NMOS 26
   4.3 Channel Length Dependence of Flicker Noise in NMOS 28
4.4 Hot carrier Stress Induced Threshold Voltage Shift 30
4.5 Mechanism of Flicker Noise in PMOS 37
Chapter 5 Oxide Soft Breakdown Effects
on Drain Current Flicker Noise 42
5.1 Introduction 42
5.2 Tunneling Current Effects on Drain Current Flicker Noise 42
5.3 Comparison of Soft Breakdown Effect
between NMOS and PMOS 46
5.4 Channel Width Dependence 47
Chapter 6 Conclusion 56
Reference List 57

Reference List
[1] H. S. Momose et al., “High-frequency AC characteristics of 1.5 nm gate oxide MOSFETs,” IEEE IEDM Tech. Dig. pp. 105-108, 1996.
[2] S. Christensson, I. Lundstrom, and C. Svensson, “Low Frequency Noise in MOS Transistors -- I Theory,” Solid-State Elec., Vol. 11, pp. 797-812, 1968.
[3] H. S. Fu, and C. T. Sah, “Theory and Experiment on the 1/f Noise,” IEEE Trans. Elec. Dev., Vol. ED-32, pp. 273, 1972.
[4] A. L. McWhorter, “1/f noise and germanium surface properties, ” Semiconductor Surface Physics. Philadelphia:Univ. of Pennsylvania Press, pp. 207, 1957.
[5] L. K. J. Vandamme, “Model for 1/f Noise in MOS Transistors Biased in the Linear Region,” Solid-State Elec., Vol. 23, pp. 317, 1980.
[6] T. G. M. Kleinpenning, and L. K. J. Vandamme, “Model for 1/f Noise in Metal-Oxide-Semiconductor Transistors,” J. Appl. Phys., Vol. 52, pp.1594, 1981.
[7] F. N. Hooge, “1/f Noise Source,” IEEE Trans. Elec. Dev., Vol. 41, No. 11, pp. 1926-1935, Nov. 1994.
[8] Kwok K. Hung, et al., “A Unified Model for the Flicker Noise in Metal-Oxide- Semiconductor Field-Effect Transistors,” IEEE Trans. Elec. Dev., Vol. 37, No. 3, pp. 654-665, 1990.
[9] Kwok K. Hung, et al., “A Physics-Based MOSFET Noise Model for Circuit Simulators,” IEEE Trans. Elec. Dev., Vol. 37, No. 5, pp. 1323-1333, May 1990.
[10] Ming-Horn Tsai, and Tso-Ping Ma, “The Impact of Device Scaling on the Current Fluctuations in MOSFET’s,” IEEE Trans. Elec. Dev., Vol. 41, No. 11, pp. 2061-2068, Nov. 1994.
[11] A. van der Ziel, Adv. Electron Phys., Aacademic Press, New York, Vol. 49, pp. 225, 1979
[12] Ralf Brederlow, et al., “Fluctuations of the Low Frequency Noise of MOS Transistors and their Modeling in Analog and RF-Circuits,” IEEE IEDM, pp.159-162, 1999.
[13] F. N. Hooge, and L. K. J. Vandamme, “Lattice Scattering Causes 1/f Noise,” Phys. Let., Vol. 66A, pp. 315, 1978.
[14] Kwok K. Hung, et al., “A Physics-Based MOSFET Noise Model for Circuit Simulators,” IEEE Trans. Elec. Dev., Vol. 37, No. 5, pp. 1323-1333, May 1990.
[15] C. T. Sah, and F. H. Hielscher, “Evidence of the Surface Origin of the 1/f Noise,” Phys. Rev. Let., Vol. 17, pp. 956-958, 1966.
[16] B.Eitan, et al., “A Novel Localized trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Elect. Dev. Lett., Vol. 21, pp. 543-545, 2000.
[17] B. De Salvo, et al., “ONO and NO Interpoly Dielectric Conduction Mechanisms,” Micro. Rel., Vol. 39, pp. 235-239, 1999.
[18] B. Boukriss, et al., “Modeling of the 1/f Noise Overshoot in Short-Channel MOSFET’s Locally Degraded by Hot-Carrier Injection,” IEEE Elec. Dev. Let., Vol. 10, No. 10, pp. 433-436 Oct. 1989.
[19] M. J. Knitel, et al., “Impact of Process Scaling on 1/f Noise in Advanced CMOS Technologies,” IEEE IEDM, pp. 19.4.1-19.4.4, 2000.
[20] Felice Crupi et al., “On the properties of the gate and substrate current after soft breakdown in ultrathin oxide layers,” IEEE Trans. Electron Dev., Vol. 45, pp. 2329-2334, 1998.
[21] B. E. Weir, “Utra-Thin Gate Dielectrics: They Break Down, But Do They Fail?” IEEE IEDM Techn. Dig. pp. 73-76 1997.
[22] E. Wu et al., “Structural dependence of dielectric breakdown in ultra-thin gate oxides and its relationship to soft breakdown modes and device failure,” IEEE IEDM Tech. Dig. pp. 187-190 1998.
[23] Robin Degraeve et al., “Relation between breakdown mode and breakdown location in short channel NMOSFETs and its impact on reliability specifications,” IEEE IRPS, pp.360-366, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top