跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何嘉政
研究生(外文):Ho Jia Cheng
論文名稱:以PECVD介電薄膜之性質及崩潰電場分佈
論文名稱(外文):Characteristics and Breakdown Field Distribution of Dielectric Thin Films
指導教授:邱碧秀
指導教授(外文):Bi-Shiou Chiou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:電容崩潰電場分佈
外文關鍵詞:weakest-link model
相關次數:
  • 被引用被引用:1
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用PECVD鍍製氮化矽已經廣泛的被研究於IC的後段製程中。在本篇論文以PECVD鍍製MIM結構電容的介電層會有電滯現象(hysteresis effect)與頻率散佈效應(frequency dispersive effect),進行電漿處理後可以消除電滯現象,這是因為減少介電層中的Si-(dangling bond)。量測不同面積的MIM結構電容的崩潰電場,可以發現當電容面積越大,所得到的崩潰電場也越小,這可以利用weakest-link model來解釋,如果介電層經過電漿處理可以使介電層的崩潰機率較為一致,而可計算得到它的崩潰機率,經過電漿處理的氮化矽電容崩潰機率為0.004308,以二氧化矽為介電層的MIM電容結構為0.001206。對於電容的高頻量測是利用floating結構電容,電極的長度,與下探針的點,與不同的電極厚度對於電容的阻抗都會造成影響。

Abstract
Dielectric thin films deposited by PECVD have been intensively researched in the IC back-end process. In this study, metal-insulator-metal capacitors using PECVD nitride suffer from frequency dispersive effects and hysteresis effects. After plasma treatment, we can reduce hysteresis effects because the number of Si-(dangling bond) decreases.
Breakdown field distributions are influenced by capacitor area. When capacitor area increases, the breakdown field decreases. It can be explained by weakest-link model. If the dielectric thin films are treated by plasma, the breakdown probability becomes uniform. So we can get p=0.004308 of plasma treated silicon nitride and p=0.001206 of plasma treated silicon dioxide. At high frequency, we measured S parameter of the capacitors. Finally, impedances of the floating capacitors are influenced by length and thickness of the electrodes.

目錄
第一章 緒論 ------------------------------------------ -------------------------- 1
1.1研究動機----------------------------------------- -------------------------- 1
1.2可靠度的研究----------------------------------- -------------------------- 2
第二章 文獻回顧-------------------------------------- -------------------------- 4
2.1統計可靠度-------------------------------------- -------------------------- 4
2.2介電崩潰----------------------------------------- -------------------------- 10
2.3極化與極化機構-------------------------------- -------------------------- 12
2.4介電鬆弛----------------------------------------- -------------------------- 16
2.5電漿輔助化學氣相沈積法鍍膜-------------- -------------------------- 18
2.6漏電流機制-------------------------------------- -------------------------- 22
2.7高頻量測----------------------------------------- -------------------------- 24
第三章 實驗流程-------------------------------------- -------------------------- 34
3.1基板清潔----------------------------------------- -------------------------- 34
3.2長氧化層----------------------------------------- -------------------------- 34
3.3底電極鍍覆-------------------------------------- -------------------------- 34
3.4底電極熱處理----------------------------------- -------------------------- 35
3.5介電層鍍覆-------------------------------------- -------------------------- 35
3.6上電極圖形定義鍍覆-------------------------- -------------------------- 38
3.7量測分析----------------------------------------- -------------------------- 45
3.8物性分析----------------------------------------- -------------------------- 47
第四章 結果與討論----------------------------------- -------------------------- 49
4.1MIM結構電容----------------------------------- -------------------------- 49
4.2介電質薄膜的漏電流機制探討-------------- -------------------------- 57
4.3MIM電容的崩潰電場分佈-------------------- -------------------------- 66
4.4在不同頻率下的電容器的性質-------------- -------------------------- 85
第五章 結論-------------------------------------------- -------------------------- 93
參考文獻----------------------------------------------- -------------------------- 95

參考文獻
[1.1] 羅偉仁, ”The Effect of Substrate Type, Post-Annealing Temperature, and Deposition Method on the Dielectric Characteristics and Frequency Properties of Barium Strontium Titanate(BST) Thin Film Capacitors”, 交通大學碩士論文, 民國88年, pp.132-137.
[1.2] 陳建良, ”The Effects of Substrate Temperature, SputteringAmbient and Annealing Condition on the Dielectric Characteristic of Tantalum Oxide thin film capacitors”, 交通大學碩士論文, 民國88年, pp.130-135.
[1.3] M.Racanelli, Z.Zhang, J.Zheng, A.Kar-roy, P.Joshi, A.Kalburge, L.Nathward, M.Todd, C.Ukah, C.Hu, B.Compton, K.Schuegranf, P.ye, R.Dowlatshashi, G.Jolly, and P.Kempf, ”BC35: A 0.35μm, 30GHZ, production RF BiCMOS Technology,”Proc. IEEE Bipolar/BiCMOS Circuits Technol. Meeting, Sept. 1999, pp.125-128.
[1.4] T.Yoshitomi, Y.Ebuchi, H.Kimijama, T.Ohguro, E.Morifuji, H.Momose, K.Kasai, K.Ishimaru, F.Matsuoka, Y.Katsumata, M.Kinugawa, H.Iwai, ”High performance MIM capacitor for RF BiCMOS/CMOS LSIs,”in Proc. IEEE Bipolar/BiCMOS Circuits and Technol, Meeting, Sept.2000, pp. 133-136.
[1.5] David K. Cheng, ”Field and Wave Electromagnetics,”2th edition, Addison-Wesley Publishing Company, pp. 340-343.
[1.6] 李雅明, ”固態電子學”, 全華出版社, 民國84年, pp.165.
[1.7] 國立編譯館, 邱碧秀, ”電子陶瓷材料”, 民國77年, pp.85-87.
[1.8] Loren J.Wise, Ronald D.Schrimpf, Harold G.Parks, Kenneth F.Galloway, ”A Generalized Model for the Lifetime of Microeletronic Components, Applied to Storage Conditions”, Miceletronics Reliability 41(2001), pp.317-322.
[2.1 ]戴久永, ”可靠度導論” , 三民書局, 民國79年, pp.45-50.
[2.2] 阮光業, 盛其安, ”品質管制與可靠度工程”, 超級科技圖書社, 民國79年, pp.185-194.
[2.3] Lee J.Bain, ”Statistical Analysis of Reliability and Life-testing Models”, Second Edition, Marcel Dekker, Inc., 1991, pp.90-345.
[2.4] Bryan Dodson, Dennis Nolan, ”Reliability Engineering Bible”, First Edition, Quality Publishing, 1995, pp.55-60.
[2.5] G.Raju, A.Katebian, and S.ZJafri, ”Application of Weibull Distribution for High Temperature Breakdown Data”, 2001 Annual Report Electrical Insulation and Dielectric Phenomena, Conference on, pp.173-176.
[2.6] M.Finkel, W.Boeck, L.R.Janicke, and E.Kynast, ” Experimental Studies on the Statistical Breakdown Characteristic of SF6”, 2000 Conference on Electrical Insulation and Dielectric Phenomena, pp.405-408.
[2.7] W.Hauschild, and W.Burger, ”Statistical Modelle fur den Elektrischen Durchschlag in SF6”, Z.elektr. Inform.-u, En-ergietechnik5 (1975)4, pp.283-295.
[2.8] F.Gurein, B.Dumon, R.Hambli, ” Determining the Shape Parameter of a Weibull Distribution from Mechanical Damage Models”, Reliability and Maintainability Symposium, 2001 Proceedings Annual, pp.156 —160.
[2.9] J.H.Stathis, ”Percolation Models for Gate Oxide Breakdown”, J.Appl.Phys., vol.86, p5757, 1999.
[2.10] J.H.Stathis, ”Physical and Predictive Models of Ultra Thin Oxide In CMOS Devices and Circuits”, Reliability Physics Symposium, 2001. Proceedings. 39th Annual. 2001 IEEE International, pp.132-148.
[2.11] ”JEDEC Standard No. 35-A”, pp.2-20.
[2.12] J.C.Jackson, O.Oralkan, D.J.Dumin, and G.A.Brown, ”Electric Breakdowns and Breakdown Mechanisms in Ultrathin Silicon Oxides”, Microelectronics Reliability 39(1999), pp.171-179.
[2.13] E.Y.Wu, E.J.Nowak, and Rolf-Peter Vollertsen, and L.-K.Han, ” Weibull Breakdown Characteristics and Oxide Thickness Uniformity”, Electron Devices, IEEE Transactions on, vol. 47, Dec. 2000, pp.2301 -2309.
[2.14] J.Sune , ”New Physics-Based Analytic Approach to the Thin-Oxide Breakdown Statistics” , IEEE Electron DeviceLetter, vol.22 , NO.6, JUNE 2001, pp.296-298.
[2.15] D.R.Wolters, and J.E.Verwey, ”Instabilities in Silicon Devices. Amsterdam”, The Netherlands: Elsevier Science, 1986, ch.6, pp.332.
[2.16] J.Sune, I.Placencia, N.Barniol, E.Farres, F.Martin, and X.Aymerich, ”On the Breakdown Statistics of very thin SiO2 Films”, Thin Solid Films, vol.185, 1990, p.34.
[2.17] E.Wu, E.Nowak, A.Vayshenker, J.McKenna, D.Harmon, and R.-P.Vollertsen, ” New Global Insight in UltrathinOxide Reliability Using Accurate Experimental Methodology And Comprehensive Database”, Device and Materials Reliability, IEEE Transactions on, vol.1, March 2001, pp.69 -80.
[2.18] R.Degraeve, PH.Roussel, G.Groeseneken, and H.E.Maes, ”A New Analytic Model for the Description of the Intrinsic Oxide Breakdown Statistics of Ultrathin Oxides”, Microelectron. Reliab., vol. 36, No. 11/12, pp.1639-1642, 1999.
[2.19] 汪建民, ”陶瓷技術手冊(上)”, pp.224-229, 403-410, 1994.
[2.20] 陳力俊, ”微電子材料與製程”, 中國材料科學學會, 民國89年,pp.350-360.
[2.21] S.Decoutere, F.Vleugels, R.Kuhn, R.Loo, M.Caymax,S.Jenei, J.Croon, S.Van Huylenbroeck, M.DaRold,E.Rosseel, and P.Coppens, ”A 0.35μm SiGe BiCMOSProcess Featuring at 80GHz Fmax HBT and IntegratedHigh-Q RF passive components,” in Proc.IEEEBipolar/BiCMOS Circuit Technol. Meeting, Minneapolis, MN,Sept.2000, pp.106-109.
[2.22] A.Kar-Roy, C.Hu, M.Racanelli, C.A.Compton, P.Kempf, G.Jolly, P.N.Sherman, J.Zheng, Z.Zhang,and A.Yin, ”High Density Metal Insulator Metal Capacitors Using PECVD Nitride for Mixed Signal and RF Circuits Interconnect Technology”, IEEE International Conference, 1999, pp.245 —247.
[2.23 ]J.A.Babcock, S.G.Balster, A.Pinto,C.Dirnecker, P.Steinmann, R.Jumpertz, and B.El-Kareh, ” Analog Characteristics of Metal-Insulator-Metal Capacitors using PECVD Nitride Dielectrics”, IEEE Electron Device Letters, vol.22 Issue:5, May 2001, pp. 230 —232.
[2.24] A. Yin, J.White, A.Karroy, and C.Hu, ”Integration of Polycide/Metal Capacitors in Advanced Device Fabrication”, 1998 IEEE, pp.131-134.
[2.25] S.M.Sze, ”Physics of Semiconductor Device”, 2nd ed., Wiley, 1981, pp.400-405.
[2.26] J.Bardeen, ”Surface States and Rectification at a Metal Semi-conductor Contact”, Phys.Review, vol.71(10), 1947, pp.717
[2.27] 袁杰, ”高頻電路分析與設計(二)”, 全威圖書有限公司, 民國86年, pp.78-162.
[2.28] David M.Pozar, ”Microwave Engineering”, Second Edition, JOHN WILEY & SONS, INC., pp.182-243.
[3.1] ”20GHz元件高頻S參數量測系統(20GHz S-parameter measurement system)”, http://www.ndl.gov.tw/List_of_ Equip_R&F/index.htm.
[3.2] L.W.Schaper, K.Y.Chen, W.D.Brown, S.S.Ang, and H.A. Naseem, ”Thin Film Decoupling Capacitors: A High Frequency Performance Analysis” , Proceedings. 49th of Electronic Components and Technology Conference, 1999, pp.859 —866.
[4.1] D.C.D’Avanzo, D.B.Estreich, T.W.Taylor, H.Kondoh, J.Orr,A.Quach, E.H.Wong, R.Yeats, V.K.Makker, and R.Fisher, ”A Manufacturable, 26GHz GaAs MMIC Technology”, in Proc. GaAs IC Symp., 1988, pp.317-320.
[4.2] A.Kar-Roy, C.Hu, M.Racanelli, C.A.Compton, P.Kempf, G.Jolly , P.N.Sherman , J.Zheng, Z.Zhang ,and A.Yin , ”High Density Metal Insulator Metal Capacitors Using PECVD Nitride for Mixed Signal and RF Circuits Interconnect Technology”, 1999. IEEE International Conference, 1999, pp.245 —247.
[4.3] P.Zurcher, P.Alluri, P.Chu, A.Duvallet, C.Happ, R.Henderson, J.Mendonca, M.Kim, M.Petras, M.Raymond, T.Remmel, D.Roberts, B.Steimle, J.Stipanuk, S.Straub, T.Sparks, M.Tarabbia, H.Thibieroz, and M.Miller, ” Integration of Thin Film MIM Capacitors and Resistors into Copper Metallization Based RF-CMOS and Bi-CMOS Technologies”, Electron Devices Meeting, 2000. IEDM Technical Digest. International, pp.153 —156.
[4.4] T.Yoshitomi, Y.Ebuchi, H.Kimijama, T.Ohguro, E.Morifuji, H.Momose, K.Kasai, K.Ishimaru, F.Matsuoka, Y.Katsumata, M.Kinugawa, and H.Iwai, ”High performance MIM capacitor for RF BiCMOS/CMOS LSIs”, Bipolar/BiCMOS Circuits and Technology Meeting, 1999. Proceedings of the 1999, pp. 133 —136.
[4.5] S.Jenei, S.Decoutere, S.Van Huylenbroeck, G.Vanhorebeek, B.Nauwelaers, ” High Q inductors and Capacitors on Si Substrate”, Silicon Monolithic Integrated Circuits in RF Systems, 2001. Digest of Papers. 2001 Topical Meeting on, 2001 pp.64 —70.
[4.6] W.S.Lau, ”The Identification and Suppression of Defects Responsible for Electrical Hysteresis in Metal-Nitride-Silicon Capacitors”, Japn. J. Appl. Phys. Lett., vol.29, No.5, pp.L690-L693,1990.
[4.7] S.Van Huylenbroeck, S.Decoutere, R.Venegas, S.Jenei, and G.Winderickx, ”Investigation of PECVD Dielectrics for Nondipersive Metal-Insulator-Metal Capacitors”, IEEE Electron Device Letters, Vol.23, No.4, APRIL.2002, pp.191-193.
[4.8] 蔡耀城, ”An Investigation on the Electrical Properties of SrBi2Ta2O9 Capacitors Prepared by Ratio-frequency Sputtering Method”, 清華大學電子工程研究所碩士論文, 1999, pp.24-30.
[4.9] 張紹德, ”鈦酸鍶鋇電容器電流傳導機制之分析”, 清華大學電子工程研究所碩士論文” 2001, pp.34-50.
[4.10] H.Goshima, N.Hayakawa, M.Hikita, K.Uchida, H.Okubo, ”Statistical Analysis of Area and Volume on Breakdown Voltage in Liquid Nitrogen Using Weibull istribution”, Conference Record of the 1994 IEEE International Symposium on Electrical Insulation, June 5-8, 1994, pp.430-433.
[4.11] J.Suehiro, K.Ohno, T.Takahashi, M.Miyama and M.Hara, ”Size Effect and Statistical Characteristic of DC and Pulsed Breakdown of Liquid Helium”, IEEE Transactions On Dielectrics and Electrical Insulation, vol.3, No.4, Aug.1996, pp.507-513.
[4.12] B.Liu, W.Chen, Y.Zhang, and S.Chen, ”Distribution Regularity of Breakdown Field Strength of High Voltage Ceramic Breakdown”, Proceedings of The 6th International on Properties and Applications Of Dielectric Materials, Jun.21-26 2000, pp.1037-1040.
[4.13] X.Qi, G.Wang, Z.Yu, R.W.Dutton, T.Young, N.Chang, ”On-Chip Inductance Modeling and RLC Extraction of VLSI Interconnects for Circuit Simulation”, Custom Integrated Circuits Conference, 2000. CICC. Proceedings of the IEEE 2000, pp.487-490.
[4.14] K.C.Chen, W.D.Brown, L.W.Schaper, S.S.Anf, and H.A.Naseem, ”A Study of the High Frequency Performance of Thin Film Capacitors for Electronic Packaging”, IEEE Transaction on Advanced Packaging, vol.23, No.2, May 2000, pp.293-302.
[4.15] L.W.Schaper, K.Y.Chen, W.D.Brown, S.S.Ang, and H.A.Naseem, ”Thin Film Decoupling Capacitors: A High Frequency Performance Analysis”, 1999 Electronic Components and Technology Conference, pp.859-866.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top