跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 21:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭柏儀
研究生(外文):Po-Yi Kuo
論文名稱:選擇性沉積鎢汲極源極複晶矽薄膜電晶體之製作與研究
論文名稱(外文):Study of Selective Tungsten Raised-Source/Drain Polycrystalline Silicon Thin Film Transistors
指導教授:施敏施敏引用關係張鼎張
指導教授(外文):Simon-Min SzeTing-Chang Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:薄膜電晶體
外文關鍵詞:TungstenThin Film Transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用選擇性化學氣相沉積鎢的技術將鎢金屬沉積於複晶矽薄膜電晶體的汲極源極上,以便有效降低薄通道複晶矽薄膜電晶體汲極源極的串聯電阻。和沒有沉積鎢金屬的傳統薄通道複晶矽薄膜電晶體相比較,本實驗所製作的選擇性沉積鎢汲極源極複晶矽薄膜電晶體(簡稱為 鎢-薄膜電晶體)具有較高的導通電流,較佳的電流飽和曲線,同樣優越的臨界電壓和次臨界波動,以及同樣低的漏電流。
除了降低汲極源極串聯電阻,本實驗還研究通道厚度和輕摻雜汲極(LDD)結構對鎢-薄膜電晶體特性的影響,結果發現超薄通道(300 Å)的鎢-薄膜電晶體因為減少了基極中性區域的大小,所以可以比厚通道元件更有效地抑制浮動基極效應(floating body effect);另外,具有輕摻雜汲極結構的鎢-薄膜電晶體也因為降低了汲極端電場強度而可以擁有較低的漏電流和較輕微的轉折效應(kink effect)。為了更進一步了解元件抑制短通道效應的情形,我們還比較了不同通道長度的元件特性,並在分析不同元件臨界電壓隨通道長度縮短而下降(threshold voltage roll-off)的情形時,發現超薄通道輕摻雜汲極鎢-薄膜電晶體臨界電壓下降程度比傳統電晶體的輕微,這或許是因為鎢覆蓋源極排除基極電流的能力較強,所以也就進一步抑制了浮動基極效應。
本實驗中,長通道鎢-薄膜電晶體也被發現適合應用在高電壓操作的顯示器周邊電路上,尤其是薄通道輕摻雜汲極鎢-薄膜電晶體雖然擁有比厚通道元件低的導通電流,卻因為它抑制了浮動基極效應而有較佳的飽和曲線,所以在萃取輸出阻抗以及電壓增益後發現,它反而具有最優越的表現。
本實驗成功研製出新穎選擇性沉積鎢汲極源極複晶矽薄膜電晶體,它不但具有良好的特性,而且製程溫度低、結構簡單,更重要的是它可以和目前發展的頂閘極複晶矽薄膜電晶體技術相容,相信能應用於未來低溫複晶矽薄膜電晶體的顯示器當中。

In this study, we have fabricated and characterized tungsten-raised source/drain polycrystalline silicon thin film transistors (W-TFTs). Tungsten film is selectively deposited at 300 ºC on an exposed poly-Si source/drain region to form a raised source/drain structure. As a result, the parasitic source/drain resistance is greatly reduced, and the drain current is dramatically improved as compared to conventional oxide-spacer counterpart.
To suppress the floating body effect, W-TFTs with ultrathin channel thickness (30 nm) are also fabricated. While compared to W-TFTs with 50-nm-thick channel, ultrathin channel W-TFTs have less pronounced kink effect. In addition, ultrathin channel W-TFTs with LDD (Lightly-Doped Drain) can further decrease the OFF current since the electric filed near the drain side is reduced.
The threshold voltage roll-offs are also studied by analyzing characteristics of W-TFTs with different channel lengths. It is found that the threshold voltage roll-off of W-TFTs with ultrathin channel and LDD structure is less pronounced than that of their conventional counterparts. This may be due to easily repelling of body current for W-clad source and thus suppressing the floating body effect.
To serve as AMLCD peripheral circuits, device performances under high voltages are also investigated. Compared to 50-nm-thick channel conventional TFTs with or without LDD structure, ultrathin channel LDD W-TFTs are found to have superior output resistance and voltage gain despite their low driving current.
We have proposed a new poly-Si TFT structure with W-raised source/drain. The structure is simple and compatible with conventional low-temperature poly-Si (LTPS) processing, and can readily be applied to future LTPS fabrication.

Abstract (in Chinese) Ⅰ
Abstract (in English) Ⅲ
Acknowledgment (in Chinese) Ⅴ
Contents Ⅵ
Chapter 1 Introduction …………………………………………………1
1.1 Background ……………………………………………………………1
1.2 Motivation…………………………………………………………… 3
1.3 Thesis Outline ………………………………………………………4
Chapter 2 Experimental Procedures……………………………………5
2.1 W-Raised S/D Poly-Si TFT Fabrication Process ………………5
2.2 Measurement……………………………………………………………7
2.3 Method of Device Parameters Extraction ………………………7
2.3.1 Determination of Threshold Voltage …………………………7
2.3.2 Determination of Subthreshold Swing…………………………8
2.3.3 Determination of Field Effect Mobility ……………………8
2.3.4 Determination of On / Off Current Ratio……………………9
2.3.5 Determination of the Trap State Density……………………10
2.4 Selective Chemical Vapor Deposition Tungsten Process ……12
Chapter 3 Results and Discussions …………………………………14
3.1 The SEM images ………………………………………………………14
3.2 The comparison between W-TFTs and conventional oxide-spacer TFTs
… ……………………………………………………………………………14
3.3 The influences of LDD structure on W-TFTs characteristics
… ……………………………………………………………………………17
3.4 The influences of channel thickness on W-TFTs characteristics …………………………………………………………19
3.5 High voltage output characteristics of W-TFTs………………20
3.6 The effects of NH3 plasma passivation on W-TFTs……………22
Chapter 4 Conclusions…………………………………………………23
References …………………………………………………………………25
Tables
Figures

[1] A. G. Lewis, I-W. Wu, T. Y. Huang, A. Chiang, and R. H. Bruce, “Active matrix liquid crystal display design using low and high temperature processed polysilicon TFTs,“ in IEDM Tech. Dig., 1990, pp. 843-846.
[2] Y. Matsueda, M. Ashizawa, S. Aruga, H. Ohshima, and S. Morozumi, “New technologies for compact TFT LCDs with high-aperture ratio,“ Soc. Information Display, Tech. Dig., pp. 315-318, 1990.
[3] R. G. Stewart, S. N. Lee, A. G. Ipri, D. L. Jose, D. A. Furst, S. A. Lipp, and W. R. Roach, “A 9V polysilicon LCD with integrated gray-scale drivers,“ Soc Information Display, Tech. Dig., pp. 319-322, 1990.
[4] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanaka, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM Cell Technology Using a Phase-Shift Lithography,” IEEE Trans. Electron Devices, Vol. 42, No. 7,pp.1305-1313,1995.
[5] S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundaresan, M. Elahy, G. P. Polack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, and H. W. Lam, “Characteristics and Three-Dimensional Integration of MOSFETs in Small-Grain LPCVD Polycrystalline Silicon,” IEEE Trans. Electron Devices, Vol.32, No.2, pp.258-281,1985.
[6] K. Yoshizaki, h. Takahashi, Y. Kamigaki, T. Yasui, K. Komori, and H. Katto, ISSCC Digest of tech. Papers, pp. 166, February 1985.
[7] N. D. Young, G. Harkin, R.M. Bunn, D. J. McCulloch, and I.D. French, “The Fabrication and Characterization of EEPROM Arrays on Glass Using a Low-Temperature Poly-Si TFT Process,” IEEE Trans. Electron Devices, Vol. 43, No. 11, pp.1930-1936,1996.
[8] T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi Integrated Contact Type Linear Image Sensors with Poly-Si TFT’s Analog Readout Circuits and Dynamic Shift Registers,” IEEE Trans. Electron Devices, Vol.38, No.5, pp. 1086-1039,1991.
[9] Y. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, “ A Thermal Printer Head with CMOS Thin-Film Transistors and Heating Elements Integrated on a Chip,” IEEE Solid-State Circuits Conference (ISSCC), pp.266, 1998.
[10] N. Yamauchi, Y., Inaba, and M. Okamura, “An Integrated Photodetector- Amplifier using a-Si p-i-n Photodiodes and Poly-Si Thin-Film Transistors,” IEEE Photonic Tech. Lett., Vol. 5, pp. 319, 1993.
[11] M. G. Clark, “Current Status and Future Prospects of Poly-Si,” IEE Proc. Circuits Devices Syst., Vol. 141, No. 1, pp. 3.3, 1994.
[12] S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundareson, M. Elahy, G. P. Pollack, W. Richardson, A. H. Sha, L. R. Hite, R. H. Womark, P. Chatterjee, and H. William, “Characteristics and three-dimension integration of MOSFETs in a small-grain LPVCD polycrystalline silicon,” IEEE Trans. Electron Devices, Vol. ED-32, No. 2, pp. 258-281, 1985.
[13] N. Yamauchi, J-J. J. Hajjar and Rafael Reif, “Drastically improved performance in poly-Si TFTs with channel dimensions comparable to grain size”, IEDM Tech. Dig., pp. 353-356, 1989
[14] A. G. Lewis, D. D. Lee, and R. H. Bruce, “Polysilicon TFT circuit design and performance,” IEEE J. Solid-State Circuits, vol. 27, pp. 1833—1841, Dec. 1992.
[15] M. Miyasaka, T. Komatsu, W. Itoh, A. Yamaguchi, and H. Ohashima, “Effects of channel thickness on poly-crystalline silicon thin film transistors,” Ext. Abstr. SSDM, pp. 647—650, 1995.
[16] M. Yoshimi, M. Takahashi, T. Wada, K. Kato, S. Kambayashi, M. Kemmochi, and K. Natori, “Analysis of the drain breakdown mechanism in ultra-thin-film SOI MOSFET’s,” IEEE Trans. Electron Devices, vol.37, pp. 2015—2020, Sept. 1990.
[17] M. Takabatake, J. Ohwada, Y. Ono, K. Ono, A. Mimura, and N. Konishi,
“CMOS circuits for peripheral circuit integrated poly-Si TFT LCD fabricated at low temperature below 600 C,” IEEE Trans. ElectronDevices, vol. 38, pp. 1303—1309, June 1992.
[ 18] J. P. Colinge,“Reduction of floating-substrate effect in thin-film SOI MOSFET’s,” Electron. Lett., vol. 22, pp. 187—188, 1986.
[19] M. Hack and A. G. Lewis, “Avalanche-induced effects in polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 12, pp. 203—205,1991.
[20] A. Kumar et al., “Kink-free polycrystalline silicon double-gate elevated-channel
thin-film transistors,” IEEE Trans. Electron Devices, vol. 45, pp.2514—2520, Dec. 1998.
[21] Anish Kumar K. P.., Johnny K. O. Sin, Cuong T. Nguyen, and Ping K. Ko, “Kink-free polycrystalline silicon double-gate elevated-channel thin-film transistors”, IEEE Trans. on ED, pp. 2514-2519, vol. 45, no. 12, 1998
[22] S. Zhang, C. Zhu, Johnny K. O. Sin, J. N. Li, and Philip K. T. Mok, “Ultra-thin elevated channel poly-Si TFT technology for fully integrated AMLCD system on glass”, IEEE Trans. on ED, pp. 569-575, vol. 47, no. 3, 2000
[23] S. Zhang, C. Zhu, Johnny K. O. Sin, and Philip K. T. Mok, “A novel ultrathin
elevated channel low-temperature poly-Si TFT”, IEEE Electron Device Letter, pp. 569-571, vol. 20, no. 11, 1999
[24] S. Zhang, R. Han, and Mansun J. Chan, “A novel self-aligned bottom gate poly-Si TFT with in-situ LDD”, IEEE Electron Device Letter, pp. 393-395, vol. 22, no. 8, 2001
[25] S. Wolf. Silicon Processing for the VLSI Era, volume 2: process integration.
[26] Dissertation of P-S. Shil, Institute of Electronics, National Chiao Tung University, 2000.
[27] H. C. Cheng, F. S. Wang, and C. Y. Huang, “Effect of NH3 Plasma Passivation on N-Channel Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 44, pp.64—68, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top