跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 18:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:溫凰君
研究生(外文):Huang-Chun Wen
論文名稱:非晶矽覆蓋層形成超淺接面在奈米MOS元件之應用
論文名稱(外文):Ultra-Shallow Junction Formation for Nano MOS Devices Using Amorphous Silicon Capping Layer
指導教授:雷添福
指導教授(外文):Tan Fu Lei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:81
中文關鍵詞:超淺接面非晶矽覆蓋層無缺陷接面
外文關鍵詞:ultra-shallow junctionamorphous silicondefect-free junction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們提出一種應用在奈米MOS元件形成超淺接面的方法。隨著元件的微小化,短通道效應日趨嚴重。 超淺接面的形成則可以減輕穿遂效應及短通道效應。本文提出一種可以利用既有的離子佈植和快速退火技術,無須低能量離子佈植機台以形成超淺接面的方式。Diffusion from implanted amorphous silicon (DIA) 是以離子植入非晶矽覆蓋層,接著以此非晶矽層作為退火時的固態擴散源的方式形成淺接面。在非晶矽層之下,我們加疊一層氧化層以作為蝕刻時的阻擋層。由於這種非晶矽-氧化層的雙層結構可以容易去除非晶矽層,它可以提供良好的製程控制能力及提高元件的可靠度。利用非晶矽覆蓋層作為形成接面的擴散源,更能減少因離子佈植所造成的缺陷。我們因此可以形成幾乎無缺陷的超淺接面。我們同時也在DIA接面中加入氟離子,以探討氟對於接面特性的影響。另外,我們也將DIA接面與鈦/鎳多層疊金屬結構的矽化鎳製程合併。DIA結構可以減少在矽化鎳接面邊際上的缺陷數量。因此,這種方式形成的接面有良好的電性及接面特性,得以符合未來MOS技術之發展。

In this thesis, we have proposed a new ultra-shallow junction formation method for nano-MOS technology applications. As device dimension scales down, the short channel effects become more serious. Formation of ultra-shallow junctions is essential to minimizing punch-through and short channel effects. This thesis presents a method to fabricate ultra-shallow junctions using present ion implantation and rapid thermal annealing techniques without requirement of low energy implant equipments. Diffusion from implanted amorphous silicon (DIA) is performed by junction implant through an amorphous capping layer; the amorphous layer thus acts as a surface solid diffusion source during annealing. A thin oxide is deposited to serve as etching stop layer beneath the amorphous layer. This bilayer amorphous-oxide structure enables easy removal of the amorphous layer and provides good process control and device reliability. By using amorphous silicon layer as the diffusion source for junction formation, implant defects are reduced. Defect-free ultra-shallow junctions can be formed. DIA junctions are also co-implanted with F to observe the effect of F on junction characteristics. Finally, DIA junctions combined with Ti capped Ni silicide processes have been fabricated. The DIA structure has been found to reduce periphery junction defects. These junctions exhibit good electrical and junction characteristics suitable for the future MOS technology.

Abstract (Chinese) ……………………………………………………………………i
Abstract (English) ………………...…………………………………………………ii
Acknowledgement .………………………………………………………...………..iii
Contents .………………………………………………………………….…………iv
Figure & Table Captions ….…………………………………….…………………vii
Chapter1 Introduction
1.1 General Background ………………………………………………….1
1.1.1 Formation of Ultra-Shallow Junctions ………………………...2
1.1.2 Other Methods to Fabricate Ultra-Shallow Junctions …………3
1.1.3 Characterization of Titanium-Capped Nickel Silicide ………...4
1.2 Motivation .…………………………………………………………..6
1.3 Thesis Organization .…………………………………………………7
Chapter2 Formation of Ultra-Shallow Junctions by Diffusion from Implanted Amorphous Silicon
2.1 Introduction ………………………………………………………….8
2.2 DIA Experiment Procedure ………………………………………...10
2.3 Experiment A: DIA Junction Formation Mechanism
2.3.1 Junction depth and sheet resistance ……….…………………11
2.3.2 Diffusion mechanism ………………………………………..12
2.3.3 Summary of Experiment A ...………………………………..13
2.4 Experiment B: Dependence of DIA Junction on Implant Energy
2.4.1 Junction depth and sheet resistance ….……………….……...14
2.4.2 p+n junction leakage current …………………….…………..16
2.4.3 Reverse bias junction leakage characteristics ……………….17
2.4.4 Summary of Experiment B …………………………………..20
2.5 Experiment C: Dependence of DIA Junction on RTA Condition
2.5.1 Junction depths and sheet resistance ……………….………..21
2.5.2 p+n junction leakage current …………………….…………..22
2.5.3 Reverse bias junction leakage characteristics ……………….23
2.5.4 Summary of Experiment C …………………………………..25
2.6 Summary …………………………………………………………...25
Chapter3 Ultra-Shallow Junction Formed by Dual-Implantation of F and BF2+
3.1 Introduction ……………………………………………….………..48
3.2 Experiment Procedures …………………………………………….50
3.3 Junction Depths, Sheet Resistance and Junction Leakage
3.3.1 Junction depths of F implanted junctions ……………..……...51
3.3.2 Comparison of F implanted and original DIA junctions ……..53
3.3.3 p+n junction leakage current ………………….……………...54
3.4 Reverse Bias Junction Leakage Characteristics .…………………...55
3.5 Summary …………………………………………………………...56
Chapter 4 Shallow Junctions Combined With Titanium Capped Nickel Silicide
4.1 Introduction ………………………………………………….……..64
4.2 Experiment Procedures …………………………………………….66
4.3 Junction Depths, Sheet Resistance and Junction Leakage
4.3.1 Junction depths and sheet resistance …………………………67
4.3.2 p+n junction leakage current ………………….……………...67
4.4 Reverse Bias Junction Leakage Characteristics …….……………...69
4.5 Summary …………………………………………………………...70
Chapter 5 Conclusions……………………………………………………………76
Reference ……………………………………………………………………………78
Vita …………………………………………………………………………………..81

[1] Gordon Moore was one of the founders of Intel and first pointed out this “law” around 1970.
[2] Stanley Wolf, “Silicon Processing for the VLSI Era Volume 3: The Submicron MOSFET, ” Lattice Press, 1995, p.205.
[3] International Technology Roadmap for Semiconductors (ITRS99’)
[4] D.F. Downey, et al., Journal of Electronic Materials, Vol.27, No.12, 1998, p.1296.
[5] S. Shishiguchi, et al., VLSI Technology Symposium, 1997, p.89.
[6] M. Takase, et al.,”Shallow Source/Drain Extensions for pMOSFETs with High Activation and Low Process Damage Fabricated by Plasma Doping” IEDM Tech. Dig, 1997, p.475.
[7] James D. Plummer, et al., “Silicon VLSI Technology: Fundamentals, Practice and Modeling”, p.372, Parentice Hall, 2000.
[8] P.G. Carey, “Gas Immersion Laser Doping (GILD): A New ULSI Shallow Junction Formation Process” Ph.D. dissertation, Stanford Univ., 1988, p.55-59.
[9] Y. Kiyota, et al., Applied Physics Letter, Vol.64, 1994, p.910.
[10] B. Y. Tsaur and C. H. Anderson, Jr., “Dual Ion-Implantation Technique for Formation of Shallow P+-N Junctions in Silicon”, J. Applied Physics, Vol. 54, 1983, p.6336-6339.
[11] Stanley Wolf, “Silicon Processing for the VLSI Era Volume 3: The Submicron MOSFET, ” Lattice Press, 1995, p.307-308.
[12] S. Talwar, et al., “Ultra-Shallow, Abrupt, and Highly-Activated Junctions by Low-Energy Ion Implantation and Laser Annealing”, 1998 Proc. Of Ion Implantation Tech., p.74-81.
[13] J. R. Pfiester, T. C. Mele, Y. Limb, R. E. Jones, M. Woo, B. Boeck and C. D. Gunderson, “A TiN strapped polysilicon gate cobalt salicide CMOS process”, in IDEM Tech. Dig 1990, p.241-244.
[14] R. Liu, D. S. Williams, and W. T. Lynch, “Mechanism for process induced leakage current in shallow silicide junctions”, in IDEM Tech. Dig 1986, p.58-61.
[15] H. Jeon, C.A. Sukow, J.W. Honeycutt, G. A. Rozgonyi, and R. J. Nemanich, ”Morphology and phase stability of TiSi2 on Si”, J. Appl. Phys., vol. 71. No. 9, 1992, p.1.
[16] K. Maex, A. lauwers, P. Besser et al., ”Self-aligned CoSi2 for 0.18μm and below”, IEEE 1999, p.1545-1550.
[17] H. Norstrom et al., Journal of Vacuum Science and Technology, B, 8, 1990 p.1223.
[18] D. K. Sohn, J. S. Park, B. H. Lee, et al., “Formation of Co/Ti barrier and increased thermal stability of CoSi2 film in Ti capped Co/Si(100) system”, Applied Physics Letters Vol. 73 No. 16 1998, p.2302-2304.
[19] J.H. Ku, C. S. Kim, C. J. Choi, K. F., et al., ”New effect of Ti-capping layer in Co salicide process promising for deep sub-quarter micron technology”, IEEE 1999.
[20] T.H. Hou, T.F. Lei, T.S. Chao, “ Improvement of Junction Leakage of Nickel Silicided Junction by a Ti-Capping Layer”, IEEE Electron Device Letters, Vol. 20, No. 11, Nv. 1999, p.572-573.
[21] T. Ohguro, T. Morimoto, Y. Ushiku, and H. Iwai, “Analysis of enormously large junction leakage current in nickel-silicided n-type diffused layers and its improvement,” in Ext. Abst. SSDM, 1993, p.192.T.
[22] Ohguro, S. Nakamura, E. Morifuji, M. Ono, T. Yoshitomi, M.Saito, H. S. Momose, and H. Iwai, “Nitrogen-doped nickel monosilicide technology for deep submicron CMOS salicide,” in IEDM Tech. Dig, 1995, p.453.
[23] S. Shishiguchi, et al., “33nm Ultra-shallow junction technology by oxygen-free and point-defect reduction process,” IEEE 1998, p.134-135
[24] J.F. Ziegler, “Handbook of Ion Implantation Technology” North-Holland, Elsevier science publishers B.V. 1992, p.203-216.
[25] A. Agarwal, “Ultra-shallow junction formation using conventional ion implantation and rapid thermal annealing” Ion Implantation Technology, 2000. Conference on 2000, p. 293-299.
[26] 材料分析,汪建民主編,中國材料科學學會。
[27] T. Matsuda, et al. “Present Ability and Problems of Ultra-Shallow Junction Formation by RTA”, II-3, p. IWJT29-34, Japan Society of Applied Physics, 2000.
[28] T. Skotnicki et al., “Heavily doped and extremely shallow junctions on insulator-by SONCTION (SilicON Cut-off juncTION) process” IEDM Technical Digest. International, 1999, p.20.5.1 -20.5.4.
[29] H.H Tseng, et al., “The effect of silicon gate microstructure and gate oxide process on threshold voltage instabilities in p+-gate p-channel MOSFET’s with fluorine incorporation,” IEEE Trans. Electron Devices, v.39, 1992, p.1687.
[30] T. Shano, et al., “Realization of Ultra-shallow junction: suppressed boron diffusion and activation by optimized fluorine co-implantation,” IEDM Technical Digest. International, 2001, p.37.4.1 -37.4.4.
[31] Nicolet, M.A. and Lau, S.S., in VLSI Electronics: Microstructure Science, Vol.6, Chap. 6, Academic press, p.457, 1986.
[32] K. Goto, et al., “A comparative study of leakage mechanism of Co and Ni silicide processes,” 1998 IEEE Reliability Physics 1998, p.363-369.
[33] C.C. Chen, EE Masters Degree Thesis “The thermal stability of Ti/TiNi/Si and TiN/Ni/Si stack structures,” National Chiao Tung University, Taiwan, June 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top