跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/23 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳筱薇
研究生(外文):Hsiao-Wei Chen
論文名稱:四氟化碳電漿處理改善閘極絕緣層特性在MOS元件之研究
論文名稱(外文):Improvement of Gate Insulator for MOS Devices by An Additional CF4 Treatment
指導教授:雷添福
指導教授(外文):Tan-Fu Lei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:80
中文關鍵詞:低溫閘極氧化層金屬閘極一氧化二氮/四氟化碳電漿複晶矽氧化層二氧化鈦依時崩潰閘極氧化層強度
外文關鍵詞:low-temperature oxidemetal gateN2O/CF4 plasmapolyoxideTiO2TDDBGOI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
依據全球半導體技術藍圖的預估,未來的元件將趨向更小尺寸、更低阻抗以達到更高速度,因此將以金屬閘極取代複晶矽閘極、以高介電係數材料取代二氧化矽。受限於金屬閘極的製程,閘極氧化層必須以低溫形成,然而低溫閘極氧化層有大量缺陷存在矽基材與氧化層之介面,使得其漏電流偏高、可靠度不足。對高介電係數材料二氧化鈦(TiO2)而言,矽基材及二氧化鈦間的界面層(interfacial layer)會導致介電係數下降、界面缺陷增加、可靠度降低。
在本論文中,吾人提出先以四氟化碳(CF4)電漿對矽基材預處理後,再疊低溫閘極氧化層之低溫製程。四氟化碳電漿中的氟能修補界面處的不完全鍵結,減少界面缺陷;另外氟亦能促進低溫氧化層再鍵結而更為緻密。再者,四氟化碳電漿有蝕刻作用,適當控制後能用來去除高介電係數材料的界面層,從而改善二氧化鈦氧化層的特性。

According to International Technology Roadmap for Semiconductor, metal gates and high-k dielectrics would be used for future ultra-high speed CMOS logic technology. The formation of high quality low temperature gate oxide (i.e. negligible interface states) is required due to the temperature limitation of metal gate processes. Additionally, the interfacial layer between Si/high-k materials is a serious problem that would reduce k-value and degrade high-k film quality.
In this thesis, we propose that an additional CF4 pretreatment before low temperature oxide deposition could improve interface quality and gate oxide quality. Fluorine incorporation can reduce dangling bonds and enhance re-oxidation. Moreover, because of the slight etching property of CF4 plasma, the interfacial layer between Si/high-k films could be removed. Therefore, the high-k films show good electrical characteristics like lower leakage current and better SILC effect.

CONTENTS
ABSTRACT (in Chinese)……………………………………………….Ⅰ
ABSTRACT (in English)……………………………………………….Ⅱ
ACKNOWLEDGEMENT (in Chinese)………………………………..Ⅲ
CONTENTS…………………………………………………………….Ⅳ
TABLE LISTS………………………………………………………….Ⅶ
FIGURE CAPTIONS…………………………………………………..Ⅷ
Chapter 1
Introduction…………………………………………………………….1
1.1 General Background……………………………………………………………...1
1.2 Motivation………………………………………………………………………..2
1.3 Organizing of the Thesis…………………………………………………………3
Chapter 2
Basic Characteristics of Low Temperature Gate Insulator……………5
2.1 Introduction………………………………………………………………………5
2.2 Experiments………………………………………………………………………5
2.2.1 Formation of Low Temperature SiN with TiN gate……………………….6
2.2.2 Formation of Low Temperature oxide with TiN gate……………………..6
2.2.3 Formation of Low Temperature oxide with Polygate……………………..7
2.3 Results and Discussion……………………………………………………………8
2.3.1 Characteristics of Low Temperature SiN with TiN gate………………….8
2.3.2 Characteristics of Low Temperature oxide with TiN gate………………..9
2.3.2.1 The Electrical and Physical Characteristics of MOS
Capacitors………………………………………………………9
2.3.2.2 The Electrical Characteristics of MOSFETs…………………..12
2.3.3 Characteristics of Low Temperature oxide with Polygate………………13
2.3.3.1 The Electrical Characteristics of MOS Capacitors……………13
2.3.3.2 The Electrical Characteristics of MOSFETs…………………..14
2.4 Summary………………………………………………………………………...16
Chapter 3
Characteristics of Low Temperature SiO2 as Polyoxide………………41
3.1 Introduction………………………………………………………………………41
3.2 Sample Preparation………………………………………………………………42
3.3 Results and Discussion…………………………………………………………..43
3.4 Summary…………………………………………………………………………46
Chapter 4
Effect of Plasma Pretreatment on TiO2 High-k Dielectric Film……..56
4.1 Introduction…………………………………………………………………….56
4.2 Experiments…………………………………………………………………….57
4.3 Results and Discussion…………………………………………………………58
4.4 Summary……………………………………………………………………….61
Chapter 5
Conclusions……………………………………………………………69
References……………………………………………………………..71
Vita (in Chinese)………………………………………………………78

[1.1] International Technology Roadmap for Semiconductors, 1999 edition.
[1.2] J. H. Stathis and D. J. DiMaria, “Reliability projection of ultra-thin oxides at low voltage”, Technical Digest International Electron Devices Meeting (IEEE, Piscataway, NJ, 1998), p.167.
[1.3] R. Degraeve, et al., “Temperature acceleration of oxide breakdown and its impact on ultra-thin gate oxide reliability”, Technical Digest of VLSI Symposium (IEEE, Piscataway, NJ, 1999), p.59.
[1.4] D. J. DiMaria and J. H. Stathis, “Breakdown measurements of ultra-thin SiO2 at low voltage”, Appl. Phys. Lett. 74, 1752 (1999).
[1.5] H. F. Luan, et al., Tech. Dig. Int. Electron Devices Meet., 609 (1998).
[1.6] D. Park, et al., Tech. Dig. Int. Electron Devices Meet., 381 (1998).
[1.7] Y. Moniyama, H. Minakata, and T. Sugii, Symposium on VLSI Technology Digest of Technical Papers, 10-12 June 1997, Kyoto, Japan, p.135.
[1.8] X. Guo, et al., Tech. Dig. Int. Electron Devices Meet., 377 (1998).
[1.9] B. He, et al., Tech. Dig. Int. Electron Devices Meet., 1038 (1998).
[1.10] R. A. McKee, F. J. Walker, and W. L. Gladfelter, Phys. Rev. Lett. 81, 3014 (1998).
[1.11] K. J. Hubbard and D. G. Schlom, J. Master. Res. 11, 2757 (1996).
[1.12] Tadahiro Ohmi, “Trend of future silicon technology”, Jpn. J. Appl. Phys., Vol.33, p.6747, 1994.
[1.13] K. Ino, T. Ushiki, K. Kawai, I. Ohshima, T. Shinohara, and T. Ohmi, “Highly-reliability, low-resistivity bcc-Ta gate MOS technology using low-damage Xe-plasma sputtering and Si-encapsulated silicidation process”, Symposium on VLSI Technology Digest of Technical Papers, p. 186-184, 1999.
[1.14] D. H. Lee, S. H. Joo, G. H. Lee, J. Moon, T. E. Shim, and J. G. Lee, “Characteristics of CMOSFETs with sputter-deposited W/TiN stack gate”, Symp. on VLSI Tech. Dig., p.119, 1995.
[1.15] H. Yang, et al., “A comparison of TiN processes for CVD W/TiN gate electrode on 3 nm gate oxide”, Tech. Dig. IEDM, pp.459-462, 1997.
[1.16] A. Chatterjee, et al., “Sub-100nm gate length metal gate NMOS transistors fabricated by a replacement gate process”, IEDM Tech. Dig., pp. 821-822, 1997.
[1.17] T. Ushiki, M. C. Yu, Y. Hirano, H. Shimada, M. Morita, and T. Ohmi, “Reliable tantalum gate fully-depleted-SOI MOSFET technology featuring low-temperature processing”, IEEE Trans. Electron Device, Vol.44, pp.1467-1472, 1996.
[1.18] Y. Momiyama, et al., “Ultra-thin Ta2O5/SiO2 gate insulator with TiN gate technology for 0.1μm MOSFETs”, Symp. on VLSI Tech. Dig., pp.135-136, 1997.
[1.19] D. N. Yaung, Y. K. Fang, C. H. Chen, C. C. Hung, F. C. Tsao, S. G. Wuu, and M. S. Liang, “To suppress photoexcited current of hydrogenated polysilicon TFTs with low temperature oxidation of polychannel”, IEEE Electron Device Letters, Vol.22, No.1, P.23-25, Feb. 2001.
[1.20] A. T. Krishnan, S. Bae, and S. J. Fonash, “Fabrication of microcrystalline silicon TFTs using a high density plasma approach”, IEEE Electron Device Letters, Vol.22, No.8, p.399-401, Aug. 2001.
[1.21] Y. Wu and G. Lucovsky, “Improvement of gate dielectric reliability for p+-poly MOS devices using remote PECVD top nitride deposition on thin gat oxides”, IEEE, Int. Reliability Phys. Symp., 1998, p.70.
[1.22] Yider Wu, Yi-Mu Lee, and Gerald Lucovsky, “1.6nm oxide equivalent gate dielectrics using nitride/oxide (N/O) composites prepared by RPECVD/oxidation process”, IEEE Electron Device Lett., Vol.21, No.3, p.116-118, Mar. 2000.
[1.23] C. H. Chen, et al., “Thernally-enhanced remote plasma nitrided ultrathin (1.65nm) gate oxide with excellent performances in reduction of leakage current and boron diffusion”, IEEE Electron Device Lett., Vol.22, No.8, p.378-380, Aug. 2001.
[1.24] Y. Mitani, H. Satake, and A. Toriumi, “Experimental evidence of hydrogen-related SILC generation in thin gate oxide”, IEEE International Electron Deices Meeting Technical Digest, (2001) p.129.
[1.25] F. X. Jiang and S. K. Kurinec, “Tantalum oxide thin films for microelectronic application”, Univerity/Governoment/Industry Microelectronics Symposium, 1995, p.101-104.
[1.26] C. Liu and B. Abraham-Shrauner, “Etching, sidewall passivation and microtrenching in contact holes and edge regions”, Pulsed Power Plasma Science, 2001, p.474.
[1.27] T. Tsuchizawa, et al., “ECR etching of α-Ta for X-ray mask absorber using Chlorine and Fluoride gas mixtrue”, International Microprocesses and Nanotechnology Conference, 2000, p.50-51.
[1.28] Y. Aiguo and S. J.Fonash, “High-performance p-channel poly-Si TFT’s using electron cyclotron resonance hydrogen plasma passivation”, IEEE Electron Device Letters, Vol.15, p.502, 1994.
[1.29] J. S. Suehle, et al., “Chanllenges of high-k gate dielectric for future MOS devices”, 6th International Symp. on P2ID, p.90, May, 2001
[2.1] K. Sekine, Yuji Saito, Masaki Hirayama, and Tadahiro Ohmi, “Direct nitridation of silicon surface at ultra-low-temperature by high-density and low-energy ion bombardment”, ISSM98, p.145, 1998.
[2.2] K. Sekine, Y. Saito, M. hirayama, and T. Ohmi., “High-integrity Ultri-thin Silicon Nitride Film Grown at Low Temperature for Extending Scaling Limit of Gate Dielectric”, Symposium on VLSI Technology, pp. 115-116, 1999.
[2.3] Yider Wu, Gerald Lucovsky, and Yi-Mu Lee, “The performance and reliability of PMOSFET’s with ultrathin silicon nitride/oxide stacked gate dielectrics with nitrided Si-SiO2 interfaces prepared by remote plasma enhanced CVD and post-deposition rapid thermal annealing”, IEEE Transactions on Electron Devices, Vol.47, No.7, pp.1361-1369, July, 2000.
[2.4] C. H. Chen, et al., “Thermally-enhanced remote plasma nitrided ultrathin(1.65nm) gate oxide with excellent performances in reduction of leakage current and boron diffusion”, IEEE Electron Device Letters, Vol.22, No.8, Aug. 2001.
[2.5] S. F. Ting, et al., “He plus remote plasma nitridation of ultrathin gate oxide for deep submicron CMOS technology applications”, Electronics Letters, Vol.37, No.12, 7th June 2001.
[2.6] H. R. Soleimani, B. S. Doyle, and A. Philipossian, “Formation of ultrahtin nitrided SiO2 oxides by direct nitrogen implantation into silicon”, J. Electrochem. Soc., Vol.142, No.8,p.132,1995.
[2.7] Avid Kamgar, et al., “Reduced electron mobility due to nitrogen implant prior to the gate oxide growth”, IEEE Electron Device Letters, Vol.21, No.5, May 2000.
[2.8] A. Kamgar, et al., “Impact of nitrogen implant prior to the gate oxide growth on transient enhanced diffusion,” IEDM Tech. Dig., p.695, 1997.
[2.9] G. O. Lo, et al., “Thin fluorinated gate dielectrics grown by rapid thermal processing in O2 with diluted NF3”, IEEE Trans. On Electron Device, Vol.35, p.148, 1992.
[2.10] T. K. Nguyan, et al., “Effects of fluorine implants on induced charge components in gate oxides under constant current Fowler-Nordhiem stress”, IEEE Trans. on Electron Device, Vol. 44, P.1432, 1997.
[3.1] Y. Aiguo, S. J. Fonash, “High-performance p-channel poly-Si TFT’s using electron cyclotron resonance hydrogen plasma passivation”, IEEE Electron Device Letters, Vol, 15, p. 502, 1994.
[3.2] C. Cobianu, O. Popa and D. Dascalu, “On the electrical conduction in the dielectric layers”,IEEE Electron Device Letters, Vol, 14, p. 213, 1993.
[3.3] T. One, T. Ajioka and T. Takayashiki, “Studies of thin poly-Si oxides for E and E2PROM”, IEDM Tech. Dig., p.380-383, 1995.
[3.4] J. C. Lee and C. Hu, “Polarity asymmetry os oxides grown on polycrystalline silicon”, IEEE Trans. Electron Devices, Vol. 35, No. 7, p.1063, 1998.
[3.5] C. H. Kao, C. S. Lai, and C. L. Lee, “The TEOS CVD oxide deposited on phosphorus in-situ doped polysilicon with rapid thermal annealing”, IEEE Electron Device Letters, Vol. 44, pp.526-528, 1997.
[3.6] J. Batey, E. Tierney, “Low-temperature deposition of high-quality silicon dioxide by plasma-enhanced chemical vapor deposition”, J. Appl. Phys. Vol. 60, p.3116, 1986.
[3.7] Z. Chen, K. Yasutake, A. Rohatgi, “Record low SiO2/Si interface state density for low temperature oxides prepared by direct plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., Vol. 63, p.2117, 1993.
[3.8] P. M. Lenahan, et al., “A study of charge trapping in PECVD PTEOS films”, IEEE Transactions on Nuclear Science, Vol. 44, pp.1834-1839, 1997.
[3.9] C. H. Kao, C. S. Lai, and C. L. Lee, “The TEOS oxide deposited on phosphorus in-situ/POCl3 doped polysilicon with rapid thermal annealing in N2O”, IEEE Transactions on Electron Device, Vol. 45, pp.1927-1933, 1998.
[3.10] S. C. Sun, et al., “High quality MOSFETs with N2O annealed thin TEOS gate oxide”, VLSI Technology, Systems, and Applications, International Symposium on Proceedings of Technical Papers, p.109, 1993.
[3.11] J. H. Klootwijk, et al., “Improvements of deposited interpolysilicon dielectric characteristics with RTP N2O-anneal”, IEEE Electron Device Lett., Vol.17, p.358, 1996.
[4.1] K. Sekine, et al., “High-integrity Ultri-thin Silicon Nitride Film Grown at Low Temperature for Extending Scaling Limit of Gate Dielectric”, Symposium on VLSI Technology, pp. 115-116, 1999.
[4.2] P. K. Roy, et al., “Stacked high-ε gate dielectric for giga scale integration of metal—oxide—semiconductor technologies”, Applied Physics Letters, Vol. 72, No. 22, pp. 2835-2837, Jun. 1998.
[4.3] Y. Jeon, et al., “Effect of barrier layer on the electrical and reliability characteristics of high-k gate dielectric films”, International Electron Devices Meeting, pp. 797-800, 1998.
[4.4] X. Guo, T. P. Ma, T. Tamagawa, and B. L. Halpern, “High Quality Ultra-thin TiO2/Si3N4 Gate Dielectric for Giga Scale MOS Technology”, International Electron Devices Meeting, pp. 377-380, 1998.
[4.5] X. Guo, X. Wang, Z. Luo, T. P. Ma, and T. Tamagawa, ” High quality ultra-thin (1.5 nm) TiO2/Si3N4 gate dielectric for deep sub-micron CMOS technology”, International Electron Devices Meeting, pp. 137-140, 1999.
[4.6] J. W. Lee, et. al., “Thin tunnel oxide grown on silicon substract pretreated by CF4 plasma”, IEEE Electron Device Letters, pp. 513-515, 2001
[4.7] Y. Mitani, H. Satake, and A. Toriumi, “Experimental evidence of hydrogen-related SILC generation in thin gate oxide”, IEEE International Electron Deices Meeting Technical Digest, (2001) p.129.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top