跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 15:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘星睿
研究生(外文):Shing-Rui Pan
論文名稱:高質液相沈積絕緣膜暨其微污染膜質探討
論文名稱(外文):High Quality LPD Insulator and its Electrical Property Due to Micro Contamination
指導教授:葉清發
指導教授(外文):Ching-Fa Yeh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:57
中文關鍵詞:液相沈積微污染蒸餾六氟矽酸
外文關鍵詞:LPDdistillationAMCcontaminationhydrosilicofluoric
相關次數:
  • 被引用被引用:1
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體製程對空氣中微污染的影響日益注重,關於微污染對元件特性所產生的退化將是我們要盡力避免的。我們利用迴風槽來模擬無塵室內的迴風系統,並更換槽內的濾網模組,透過製作MOS電容測試結構,在氧化層成長前於迴風槽內作暴露,經由氧化層的漏電流密度,崩潰電場強度及崩潰電荷等來探討微污染對氧化層可靠度的影響。由實驗中比較的三種濾網發現,新型的鐵氟龍(PTFE)濾網較其餘兩種濾網:低硼元素玻璃纖維濾網(Low Boron Glass-Fiber filter A/B)為優秀。透過電性分析我們可以看出相同時間內,元件暴露在新型鐵氟龍(PTFE)材質的濾網下仍能較其它兩種濾網保持較佳的漏電流密度以及崩潰電場而不至於過度退化。
為了更準確評估微污染對元件特性的影響,我們必須採用更高品質且特性更好的液相沉積氧化膜。我們採用了的新式技術是以蒸餾法製備高純度的六氟矽酸溶液,並使用來自日本的高純度二氧矽粉末(99.9999%),這種工業級的粉末與之前所使用的醫藥級二氧化矽(99.99%)相較之下,雜質的含量更大幅降低。因此可預期的,經過蒸餾法所收集到的六氟矽酸溶液配合高純度二氧化矽粉末的使用,確實可以看出電特性的改善。漏電流密度明顯的降低,以及崩潰電場小幅增加。另外,蒸餾前配製溶液的比例改變,不但會影響蒸餾時的蒸餾速率,對於之後成長液相沉積氧化膜時的沉積速率以及氧化膜的特性也有顯著的影響。由實驗中的觀察得到蒸餾前配製溶液中的二氧化矽比例越高,則蒸餾速率越慢,且在成長液相沉積氧化膜時的沉積速率也越慢,但所成長的氧化膜特性卻越好。經過特殊的方法分析蒸餾所得的六氟矽酸濃度以及實驗中的過程觀察,在此一併討論可能的反應機制並嘗試提出解釋。

As we pay more attention to effects of AMC in semiconductor manufacturing process, degradation of devices characteristics due to AMC should be avoided. We use the specially designed clean bench with different filter modules to supply different kinds of environment. In order to evaluate effect of AMC on oxide reliability, we expose samples in CB before LPD oxide film deposited. We fabricate MOS capacitor to measure the leakage current density (J-E), V-ramp stress test (Qbd) and C-V to evaluate the changes of device performance and reliability.
After our experiments, we have found that NEUROFINE PTFE filter performs better than Low-Boron Glass-Fiber Filters (A/B). Through the analysis of electrical characteristics, samples exposed under NEUROFINE PTFE filter have higher breakdown field and lower leakage current density than those exposed under Low-Boron Glass-Fiber filters (A/B) in the same exposure time.
In order to evaluate effects of AMC on devices characteristics precisely, we must use high quality and high performance low temperature LPD oxide films. We propose a novel LPD process by distilling high purity H2SiF6 solution. High purity SiO2 powder (99.9999%) form Japan is used, too. New industrial class SiO2 powder has fewer impurities than medical class SiO2 powder used before. It is expectable that using distilled H2SiF6 and high purity SiO2 powder can improve device electrical properties effectively. Leakage current density is lowered obviously, and breakdown field is slightly increased. Moreover, different ratios of pre-distilled solution will affect distillation rate and deposition rate very much. LPD oxide film quality has concern with the ratio, too. From experiments, the higher SiO2 proportion in pre-distilled solution, the lower distillation and deposition rate but the higher quality of LPD oxide film is observed. We also propose a reasonable mechanism to explain distillation method by analyzing the concentration of H2SiF6 and observation during whole process in this thesis.

Chinese Abstract ..........................................Ⅰ
English Abstract ..........................................Ⅲ
Acknowledgements ..........................................Ⅴ
Contents ..........................................Ⅵ
Table Captions ..........................................Ⅷ
Figure Captions ..........................................Ⅸ
Chapter 1 Introduction
1.1 Motivation ........................1
1.2 Organization of this thesis ........................2
Chapter 2 Effects of Airborne Micro-contamination on Low-temperature Deposited Insulator
2.1 Introduction ........................3
2.2 Airborne Micro-contamination Effects on LPD-SiO2 Film ........................4
2.2.1 Experimental Procedures ................4
2.2.2 Fabrication of MOS capacitor ......5
2.2.3 Measurement ........................5
2.3 Results and Discussions ........................6
2.3.1 Characteristics of Device in Low-Boron Glass-Fiber Filter (A) ........................6
2.3.2 Characteristics of Device in Low-Boron Glass Fiber Filter (B) ........................7
2.3.3 Characteristics of Device in PTFE Filter ........................8
2.4 Summary ........................8
Chapter 3 Novel Liquid-Phase Deposition Process
3.1 Introduction ........................29
3.2 Experimental procedures ........................30
3.2.1 Preparation of High Purity H2SiF6 by Distillation Method ........................30
3.2.2 Preparation of LPD-SiO2 Film ......30
3.2.3 Fabrication of MOS capacitor ......31
3.2.4 Measurement ........................31
3.3 Results and Discussions ........................32
3.3.1 Analyzing the Purity and Concentration of Distilled H2SiF6 .......................32
3.3.2 Characteristic of Distilled H2SiF6 Solution .......................33
3.3.2 Mechanism of Distillation ........34
3.3.4 Analysis of Electrical Characteristics and Comparison between Conventional and Novel Process .....35
3.4 Summary .......................36
Chapter 4 Conclusion and Future Work
4.1 Conclusion .......................52
4.1.1 Effects of AMC on Devices .............52
4.1.2 Novel Distillation LPD Method ......53
4.2 Future Work .......................54
Reference ......................55
Publications ........................i
Vita .......................ii

References
[1] H. Ohshima and S. Mozozumi, ” Future trends for TFT integrated circuits on glass substrates,” in IEDM Tech Dig., p.157, 1989.
[2] C. F. Yeh, Y. C. Lee, K. H. Wu, Y. C. Su, and S. C. Lee, ” Comprehensive Investigation on Fluorosilicate Glass Prepared by Temperature-Difference Based Liquid-Phase Deposition”, J. Electrochem. Soc. 147(1), pp.330, 2000.
[3] C. F. Yeh, Y. C. Lee, and S. C. Lee, ” Newly Developed Low-K and Low-Stress Fluorinated Silicon Oxide Utilizing Temperature-Difference Liquid-Phase Deposition Technology”, Mat. Res. Soc. Symp. Proc., Vol. 511, pp.57, 1998.
[4] C. F. Yeh, Y. C. Lee, and S. C. Lee, ” Reliability of Fluorinated Silicon Oxide Film Prepared by Temperature-Difference Based Liquid-Phase Deposition”, J. Electrochem. Soc. Vol.147, no.11, Nov.2000, pp.4268.
[5] C. F. Yeh, S. S. Lin, and C. L. Fan, ” Thinner Liquid-Phase Deposited Oxide for Polysilicon Thin-Film Transistors”, IEEE Electron Device Lett., Vol.16, No.11, p.473, 1995.
[6] C. F. Yeh, S. S. Lin, and T. Z. Hong, ” High Quality Thin Oxide Films Formed by Using Ultra Low Temperature Liquid Phase Deposition”, 1994 International Electron Devices and Material Symposium, July 12-15, Hsinchu, Taiwan, R.O.C., P.11-21-78, 1994.
[7] C. F. Yeh, C. L. Chen, and G. H. Lin, ” The Physicochemical Propertied and Growth Mechanism of Oxide(SiO2-xFx) by Liquid Phase Deposition with H2O Addition Only”, J. Electrochem. Soc., Vol.141, No.11, (1994), p.3177.
[8] H. Kitajima, Y. Shiramizu, ” Requirements of Contamination Control in the Gigabit Era”, IEEE Transaction on semiconductor manufacturing, Vol. 10, No. 2, May, 1997.
[9] ”Forecast of airborne molecular contamination limits for the 0.25 micron high performance logic process” technology transfer, SEMATECH, May 31, 1995.
[10] M. Tamaoki, K. Nishiki, A. Shimazaki, ” The Effect of Airborne Contamination in the Cleanroom for ULSI Manufacturing Process”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 1995.
[11] Higley, John K., Joffe, Michael A. ”Airborne Molecular Contamination: Cleanroom Control Strategies”, solid state technology, Jul, 96, Vol. 39, Issue 7, p.211.
[12] Fogg, T. R. and R. A. Duce, ”Sampling and Determination of Boron in Atmosphere”, Analysis chemistry, 1983. p. 2179-2816.
[13] Inoue, M., et al., ”Study on boron Contamination in Clean Room”, 12th International Symposium on Contamination Control. 1994. Yokohama, Japan: The International Confederation of Contamination Control Societies (ICCCS).
[14] Konishi, H. and et al., ”Method for Suppressing Boron Contamination From HEPA filter”, Monthly Semiconductor World, 1992.(12): p.181-185.
[15] M. S. Chen, J. S. Chou and S. C. Lee, ”Gate Planarization of Amorphous Silicon Thin Film Transistor with Liquid Phase Deposition Process”, IEEE Electron Devices, p.135, 1995.
[16] C. F. Yeh and S. S. Lin, ”Thinner Liquid-Phase Deposition Oxide as gate Insulator for Small-geometry Poly-Si TFT’s”, International Display Research Conference, U.S.A, Oct. 10-13, p.303-306, 1994.
[17] C. F. Yeh, S. S. Lin and T. Z. Yang, ”Performance and Off-state current Mechanism of low-Temperature Processed Polysilicon Thin-Film Transistor with LPD-SiO2 Gate Insulator”, IEEE Electron Device, ED-41, No. 2, p.173-179, 1994.
[18] C. F. Yeh, Y. C. Yang and T. Z. Yang, ” Low-Temperature Processed Poly-Si TFT using Solid Phase Crystallization and Liquid-Phase Deposition Gate Oxide”, Jpn. J. Appl. Phys., Vol. 33, Part 1, No. 4, p.375-379, 1994.
[19] C. F. Yeh, S. S. Lin, C. L. Chen and Y. C. Yang, ” Novel Technique for SiO2 Formed by Liquid-Phase Deposition for Low-Temperature Processed Polysilicon TFT”, IEEE Electron Device Lett., EDL-14, p. 403, 1993.
[20] C. F. Yeh, S. S. Lin and T. Y. Hong, ” Low-Temperature Processed MOSFET’s with Liquid Phase Deposition SiO2-xFx as Gate Insulator”, IEEE Electron Device Lett., Vol. 16, No. 7, p. 316, 1995.
[21] C. F. Yeh, S. S. Lin and T. Y. Hong, ” Fabrication of MOSFET’s Using Low-Temperature Liquid-Phase Deposited Oxide”, Microelectronic Engineering, Vol. 28, p. 101, 1995.
[22] C. F. Yeh, C. H. Liu and J. L. Su, ”Novel Contact Hole Fabrication Using Selective Liquid-Phase Deposition Instead of Reactive Ion Etching”, IEEE Electron Device Lett., Vol. 20, No. 1, Jan 1999.
[23] C. F. Yeh, C. H. Liu, and J. L. Su, ”Application of Selective Liquid Phase Deposition to Fabricate Contact Holes without Plasma Damage”, J. Electrochem. Soc., Vol. 146, p.2294, 1999.
[24] F. A. Stevie, E. P. Martin, ”Boron Contamination of surface in Silicon Microelectronics Processing: Characterization and Causes”, J. Vac. Sci. Technology, A9(5), Sep/Oct, 1991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top