跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李天成
研究生(外文):Tien-Cheng Lee
論文名稱:異質接面半導體致冷器上之應用
論文名稱(外文):The Application of Semiconductor Heterostructures in Cooling Chips
指導教授:李建平李建平引用關係
指導教授(外文):Chien-Ping Lee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:49
中文關鍵詞:異質接面熱激發致冷晶片
外文關鍵詞:heterostructurethermioniccooling chip
相關次數:
  • 被引用被引用:3
  • 點閱點閱:526
  • 評分評分:
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:0
本論文最主要的目的為利用三五族半導體之量子井結構,製作出新式熱激發型致冷晶片,藉以改善傳統熱電型致冷器之降溫特性。
整篇論文之架構可分為三大部份,首先,第一部份將對熱電型致冷器之運作原理做介紹,並引進關於評估致冷器特性優劣與否的各式參數。接下來我們便針對傳統熱電致冷器的缺點,提出了另一種新型致冷的概念,並透過理論的分析與模型的建立,將這種技術應用在異質接面半導體之量子井結構上。最後,我們將以理論為基礎,經由設計以製作出成品,並透過量測所得之結果和熱電致冷器相互比較,以證明當初之設計概念確實可行。
透過合理的設計,我們成功製作出降溫特性更好的熱激發型致冷元件。在室溫下操作即可達到最大約6.5℃的致冷功效,而遠比單純使用半導體基板最高所能達到的4℃溫降要來得好。同時,我們也針對了元件面積大小、操作之背景溫度、基板厚度及量子井周期等可能會影響元件致冷效能之各項因子進行討論,透過實驗的分析與比較,希望能藉此而設計出冷卻能力更強的微致冷晶片,並廣泛應用在各式奈米元件之冷卻系統上,相信對於元件操作之穩定性及可靠性等方面必能有所提升。
The purpose to this thesis is mainly to develop a sort of new cooling chips, fabricated with the quantum well structures of III-V compound semiconductor and called “Thermionic coolers”. There is a better cooling performance for thermionic coolers than that for conventional thermoelectric coolers.
This thesis is divided into three parts. Firstly we introduce the operation principle of a thermoelectric cooler and some characteristic parameters about a cooler. Then we publish a new cooling idea to improve some disadvantages of the conventional TE cooler , construct a design model based on the related theorems, and apply the heterostructure quantum well semiconductor in the new field. Through the appreciate theoretical design, finally we can fabricate a cooler object and make an experiment in its cooling performance by applying a DC current bias. By comparing the cooling ability for thermionic coolers with that for thermoelectric ones, the initial design conception is verified.
Through our detailed design flow, we had successfully fabricated a new cooler chip which owns better cooling performances. Its maximum cooling temperature might reach to 6.5℃under the room temperature operation circumstances, which is much better than the maximum 4℃ temperature drop for a TE cooler made by n+ GaAs substrate. Besides, we also discussed the influences of some possible factors on the device cooling ability, such as etched mesa region, operation background temperature, substrate thickness and quantum well period number, and so on. From our discussion results, we hope that we could unceasingly improve its cooling performance, stability and reliability, finally we might widely apply the micro-coolers to nano device fields.
第一章 簡介                       2
第二章 基本概念
    2-1 基本運作原理   6
    2-2 致冷器參數介紹   9
    2-3 致冷理論   17
    2-4 元件設計   22
第三章 微致冷器製作及量測系統
    3-1 磊晶結構 24
    3-2.元件製程 30
    3-3.量測系統介紹.                32
第四章 實驗結果及討論                  44
第五章 結論                       45
參考文獻                       49
1. John. E. Bowers, etc, “Experimental investigation of thin
film InGaAsP coolers”,Thermoelectric Materials 2000
2. John. E. Bowers, etc, “Integrated cooling for
optoelectronic devices”, Photons West (SPIE) Conference
Proceedings, 2000
3. N. K. Dutta, etc, “Tunable InGaAs/GaAs/InGaP laser”, APL,
1997, 1219~1220
4. Gao Min, etc, “Integrated thin film thermoelectric
cooler”, Electronics Letters, 1998, 222~223
5. G. D. Mahan, “Inhomogeneous thermoelectrics”, JAP, 1991,
4551~4554
6. G. D. Mahan, “Good Thermoelectrics”, Solid State Physics,
1997, 81~157
7. Boris Moyzhes, “Maximum thermionic energy conversion
efficiency based on the thermodynamics of irreversible
processes”, IEEE, 1996, 957~961
8. G. S. Nolas, etc, “A comparison of projected thermoelectric
and thermionic refrigerators”, JAP, 1999, 4066~4070
9. Boris Moyzhes, “Possible ways for efficiency improvement of
thermoelectric materials”, 15th International Conference on
Thermoelectrics, 1996, 183~187
10.Carlos M. Cortes, etc, “Effects of contact resistance and
dopant concentration in metal-semiconductor thermoelectric
coolers”, Electron Devices, 1980,521~525
11.Marc D. Ulrich, etc, “Comparison of solid-state thermionic
refrigeration with thermoelectric refrigeration”, JAP,
2001, 1625~1631
12.G. Chen, etc, “Thermal conductivity and heat transfer in
superlattices”, APL, 1997, 2761~2763
13.H. J. Goldsmid, “Possibilities for improvement in
Thermoelectric Refrigeration”, 18th International
Conference on Thermoelectrics, 1999, 531~535
14.Gamani Karunas, “Thermionic emission and tunneling in
InGaAs/GaAs quantum well infrared detector”, JAP, 1996,
8121~8123
15.J. M. Houston, “Theoretical Efficiency of the Thermionic
Energy Converter”, JAP, 1959, 481~487
16.John. E. Bowers, etc, “Heterostructure integrated
thermionic refrigeration“ , 16th International Conference
on Thermoelectrics, 1997, 636~640
17.G. D. Mahan, etc, “Multilayer thermionic refrigeration”,
PRL, 1998, 4016~4020
18.G. D. Mahan, etc, “Multilayer thermionic refrigerator and
generator”, JAP, 1998, 4683~4689
19.G. D. Mahan, “Thermionic refrigeration”, JAP, 1994,
4362~4366
20.C. Zhang, etc, “Electronic thermal transport and thermionic
cooling in semiconductor multi-quantum-well structures”,
Computer Physics Communications, 2001, 274~280
21.C. Zhang, etc, “Numerical calculation of thermionic cooling
efficiency in a double-barrier semiconductor
heterostructure”, Elsevier Physica E, 2001, 287~291
22.John. E. Bowers, etc, “Micro Thermoelectric coolers for
integrated applications”, 16th International Conference on
Thermoelectrics, 1997, 646~649
23.John. E. Bowers, etc, “Thermoelectric effects in submicron
heterostructure barriers”, Microscale Thermophysical
Engineering, 1998, 37~47
24.Ali Shakouri, etc, :”Material Optimization for
heterostructure integrated thermionic coolers”, 18th
International Conference on Thermoelectrics, 1999, 35~39
25.Gang Chen, “Phonon heat conduction in
nanostructures”,International Journal of Thermal Sciences,
1999, 1~37
26.K. A. Chao, etc, “Multilayer thermionic transport in
semiconductor superlattices”, Solid State Communications,
2001, 563~567
27.John. E. Bowers, etc, “Enhanced thermionic emission cooling
in high barrier superlattice heterostructures”, Material
Research Society, 1999, 449~458
28.J. P. Fleurial, etc, “Thick-film thermoelectric
microdevices”, 18th International Conference on
Thermoelectrics, 1999, 294~300
29.John. E. Bowers, etc, “Design of integrated thin film
coolers”, 18th International Conference on Thermoelectrics,
1999, 23~26
30.John. E. Bowers, etc, “SiGeC/Si sperlattice microcoolers”,
APL, 2001, 1580~1582
31.John. E. Bowers, etc, “High cooling power density SiGe/si
microcoolers", Electronics Letters, 2001, 126~127
32.John. E. Bowers, etc, “N- and P- type SiGe/Si superlattice
coolers”, International Society Conference on
Thermoelectrics, 2000, 304~307
33.John. E. Bowers, etc, “P- type SiGe/Si superlattice
cooler”, Material Research Society Meeting, 2000
34.John. E. Bowers, etc, “Monolithic integration of solid
state thermionic coolers with semiconductor lasers”, Lasers
and Electro-Optics Society Meeting, 2000, 498~499
35.John. E. Bowers, etc, “Thermal characterization of thin
film superlattice micro refrigerators”, Compound
Semiconductors, 2000 IEEE International Symposium on , 2000,
49~54
36.John. E. Bowers, etc, “Two stage monolithic thin film
coolers”, International Society Conference on Thermal
Phenomena, 2000, 44~47
37.John. E. Bowers, etc, “SiGe micro-cooler”, Electronics
Letters, 1999, 2146~2147
38.John. E. Bowers, etc, “InP-based thermionic coolers”, 11th
International Conference on Indium Phosphide and Related
Materials, 1999, 463~465
39.S. Hava, “Integrated Peltier cooled laser structure”,
Electrical and Electronics Engineers, 1985
40.Paul R. Berger, etc, “Monolithically Peltier-cooled
vertical-cavity surface-emitting lasers”, APL, 1991, 117~119
41.N. K. Dutta, etc, “Monolithically integrated thermoelectric
controlled laser diode”, APL, 1985, 222~224
42.Shlomo Hava, etc, “Monolithically Peltier-cooled laser
diodes”, Journal of Lightwave Tech. , 1984, 175~180
43.John. E. Bowers, etc, “Thermionic emission cooling in
single barrier heterostructures”, APL, 1999, 88~89
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top