跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 07:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃國荃
研究生(外文):Kuo-Chuan Huang
論文名稱:奈米尺寸金氧半場效電晶體通道逆向散射實驗與理論
論文名稱(外文):Nanoscale MOSFETs Channel Backscattering Theory and Experiment
指導教授:陳明哲陳明哲引用關係
指導教授(外文):Ming-Jer Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:45
中文關鍵詞:金氧半場效電晶體散射奈米
外文關鍵詞:MOSFETsscatteringNano
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文介紹一個簡易的金氧半場效電晶體的通道逆向散射理論.這個創新的理論是利用散射係數來代替原本我們用遷移律代表的電流-電壓關係.對於長通道的電晶體,這麼模型可以簡化成我們所認知傳統的飄移-擴散理論,但是這個模型同樣也可以適用於跟平均自由路經相比擬的通道長度,甚至比平均自由路徑還短的通道一樣都可以適用.
基於這個理論,我們對於通道長度短到75nm的金氧半場效電晶體進行低溫(-40 oC to 25 oC)與高溫(25 oC to 75 oC)的實驗,也建立了一個通道逆向理論的溫度版本模型.我們可以藉此去粹取逆向散射的參數,這些參數是能夠被表達成包括通道長度與汲極電壓的相關方程式,同樣的也被發現此參數是與閘極電壓是幾乎無關的.這個結果找到了通道逆向散射理論架構的真正起源,而且對於要預測奈米尺寸級的金氧半場效電晶體的性能極限是相當有幫助的.同樣的,我們也跟之前已發表過的逆向散射係數做了比較.

A simple channel backscattering theory of the silicon MOSFET is introduced. Current—voltage (I-V) characteristics are expressed in terms of scattering parameters rather than mobility. For long-channel transistors, the results reduce to conventional drift-diffusion theory, but they do apply to devices in which the channel length is comparable to or even shorter than the mean-free-path.
We perform temperature experiment (-40 oC to 25 oC and 25 oC to 75 oC) on MOSFETs down to 75-nm mask gate length and also build a temperature version of channel backscattering theory. In such way, we are able to extract backscattering parameter, which is expressed as a function of both gate length and drain voltage and is found to be independent of gate voltage. The resulting relation does find the origin in the framework of backscattering theory, and is very helpful in projecting performance limit of nanoscale MOSFETs. Comparisons with published values of backscattering coefficients are carried out as well.

Chapter 1 Introduction……………………………..……1
Chapter 2 Model Description…………………..………..3
Chapter 3 Experimental…………………...…..………...10
Chapter 4 Comparison, Extraction, and Projection …….12
Chapter 5 Conclusion……………………...……………14

[1] S. Y. Chou, D. A. Antoniadis, and H. I. Smith, “Observation of electron velocity overshoot in sub-100-nm-channel MOSFET’s in Si,” IEEE Electron Device Lett., vol. EDL-6, pp. 665—667, 1985.
[2] G. A. Sai-Halasz, M. R. Wordeman, D. P. Kern, S. Rishton, and E. Ganin, “High transconductance and velocity overshoot in NMOS at the 0.1-μm gate-length level,” IEEE Electron Device Lett., vol. 8, pp.464—466, 1988.
[3] S. E. Laux and M. V. Fischetti, “Monte Carlo simulation of submicrometer Si n-MOSFET’s at 77 and 300 K,” IEEE Electron Device Lett., vol. 9, pp. 467—469, 1988.
[4] M. R. Pinto, E. Sangiorgi, and J. Bude, “Silicon MOS transconductance scaling into the velocity overshoot regime” IEEE Electron Device Lett., vol. 14 pp. 375—378, 1993.
[5] C. T. Sah and H. C. Pao, “The effects of fixed bulk charge on the characteristics of metal-oxide-semiconductor transistors,” IEEE Trans. Electron Devices, vol. ED-13, pp. 393—409, 1966 (see p. 395).
[6] E. O. Johnson, “The insulated-gate field-effect transistor─A bipolar transistor in disguise,” RCA Rev., vol. 34, pp. 80—94, 1973.
[7] M. S. Lundstrom, “Elementary scattering theory of the Si MOSFET,” IEEE EDL, vol. 18, pp. 361-363, July 1997.
[8] F. Assad, Z. Ren, S. Datta, and M. S. Lundstrom, “Performance limits of silicon MOSFET's,” IEEE IEDM Tech. Dig., pp. 547-540, 1999.
[9] G. Shahidi, D. A. Antoniadis, and H. Smith, “Electron velocity overshoot at room and liquid nitrogen temperatures in silicon inversion layers,” IEEE EDL, vol. 9, pp. 94-96, Feb. 1988.
[10] A. Lochtefeld and D. A. Antoniadis, “On experimental determination of carrier velocity in deeply scaled NMOS: how close to the thermal limit?,” IEEE EDL, vol. 22, pp. 95-97, Feb. 2001.
[11] M. S. Lundstrom, “On the mobility versus drain current relation for a nanoscale MOSFET,” IEEE EDL, vol. 22, pp. 293-295, June 2001.
[12] S. M. Sze, Physics of Semiconductor Devices, p. 28, Wiley, NY, 1981.
[13] Y. Taur, C. Wann, and D. Frank, “25 nm CMOS design considerations,” IEEE IEDM Tech. Dig., pp. 789-792, 1998.
[14] P. J. Price, “Monte Carlo calculation of electron transport in solids,” Semicond. Semimetals, vol. 14, pp. 249—334, 1979.
[15] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, UK, 1997.
[16] A. Ortiz-Conde, Emanuel D. G. Fernandes, J. J. Liou, Md. R. Hassan, F. J. Garc´ýa-S´anchez, G. De Mercato, and W. Wong, “A New Approach to Extract the Threshold Voltage of MOSFET’s,” IEEE Trans. Electron Devices, vol.44. ED-9, pp. 1523—1528, Sept. 1997.
[17] X. Zhou, K. Y. Lim, and D. Lim, “A New “Critical-Current at Linear-Threshold”
Method for Direct Extraction of Deep-Submicron MOSFET Effective Channel Length,” IEEE Trans. Electron Devices, vol.46. ED-7, pp. 1492—1494, July 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top